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Abstract. We present an up-to-date profile of the Cabibbo-Kobayashi-Maskawa matrix with emphasis on
the interpretation of recent CP -violation results from the B factories. For this purpose, we review all
relevant experimental and theoretical inputs from the contributing domains of electroweak interaction. We
give the “standard” determination of the apex of the Unitarity Triangle, namely the Wolfenstein parameters
ρ and η, by means of a global CKM fit. The fit is dominated by the precision measurement of sin 2β by
the B factories. A detailed numerical and graphical study of the impact of the results is presented. We
propose to include sin 2α from the recent measurement of the time-dependent CP -violating asymmetries
in B0 → ρ+ρ−, using isospin relations to discriminate the penguin contribution. The constraint from
ε′/ε is discussed. We study the impact from the branching fraction measurement of the rare kaon decay
K+ → π+νν, and give an outlook into the reach of a future measurement of K0

L → π0νν. The B system
is investigated in detail. We display the constraint on 2β + γ and γ from B0 → D(∗)±π∓ and B+ →
D(∗)0K+ decays, respectively. A significant part of this paper is dedicated to the understanding of the
dynamics of B decays into ππ, Kπ, ρπ, ρρ and modes related to these by flavor symmetry. Various
phenomenological approaches and theoretical frameworks are discussed. We find a remarkable agreement
of the ππ and Kπ data with the other constraints in the unitarity plane when the hadronic matrix elements
are calculated within QCD Factorization, where we apply a conservative treatment of the theoretical
uncertainties. A global fit of QCD Factorization to all ππ and Kπ data leads to precise predictions of the
related observables. However sizable phenomenological power corrections are preferred. Using an isospin-
based phenomenological parameterization, we analyze separately the B → Kπ decays, and the impact of
electroweak penguins in response to recent discussions. We find that the present data are not sufficiently
precise to constrain either electroweak parameters or hadronic amplitude ratios. We do not observe any
unambiguous sign of New Physics, whereas there is some evidence for potentially large non-perturbative
rescattering effects. Finally we use a model-independent description of a large class of New Physics effects

in both B0B
0

mixing and B decays, namely in the b → d and b → s gluonic penguin amplitudes, to perform
a new numerical analysis. Significant non-standard corrections cannot be excluded yet, however Standard
Model solutions are favored in most cases. In the appendix to this paper we propose a frequentist method

to extract a confidence level on ∆ms from the experimental information on B0
sB

0
s oscillation. In addition

we describe a novel approach to combine potentially inconsistent measurements. All results reported in
this paper have been obtained with the numerical analysis package CKMfitter, featuring the frequentist
statistical approach Rfit.
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Part I
Introduction

Within the Standard Model (SM), CP violation (CPV) is generated by a single non-vanishing phase in the unitary
Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix V [1,2]. A useful parameterization of V follows from the
observation that its elements exhibit a hierarchy in terms of the parameter λ � |Vus| [3,4]. Other parameters are A, ρ
and η, where CP violation requires η �= 0. The parameters λ and A are obtained from measurements of semileptonic
decay rates of K mesons, and of B meson decays involving beauty-to-charm transitions, respectively. The constraints
on ρ and η are conveniently displayed in the complex plane where they determine the apex of the Unitarity Triangle1

(UT), which is a graphical representation of the unitarity relation between the first and the third column of the
CKM matrix. For example, semileptonic B decays yielding |Vub|, predictions of B0B0 oscillation and of indirect CP
violation in the neutral kaon sector depend on ρ, η. However the understanding of this dependence is limited by
theoretical uncertainties, which are mainly due to long distance QCD. In the era of the B factories, a large number of
measurements has appeared that are related to the CKM phase. The most famous of them is the measurement of the
CP -violation parameter sin 2β in b → cc̄s transitions, which is theoretically clean. Other modes are sensitive to the
angles α and γ of the UT, where in many cases one has to deal with interfering amplitudes with different CP -violating
phases, complicating the extraction of the CKM-related parameters.

A focus of this work is the phenomenological interpretation of B-physics results. The spectacular performance of
the first five years of the asymmetric-energy B factories, PEP-II and KEK B, and their experiments BABAR and Belle,
with published results on up to 270 fb−1 integrated luminosity (combined), has produced an avalanche of publications,
many of which are related to CP violation. In spite of the difficulties due to small branching fractions and/or hadronic
uncertainties, the goal of overconstraining the UT from tree-level-dominated B decays seems achievable even if the
precision may turn out insufficient to reveal a failure of the SM. Since tree decays are not expected to lead to large
inconsistencies with the SM, more and more experimental and theoretical effort goes into the determination of UT
angles and/or other parameters from B decays dominated by penguin-type diagrams, the most prominent of which
are b → sγ(∗) and b → ss̄s (e.g., B0 → φK0). A number of other decay modes with net strangeness in the final state,

1 Throughout this paper, we adopt the α, β, γ convention for the angles of the Unitarity Triangle. They are related to the
φ1, φ2, φ3 “historical” convention [5] as α = φ2, β = φ1 and γ = φ3. Angles are given in units of degrees.
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which are now being studied, may reveal specific signs of physics beyond the SM through unexpected CP violation or
enhanced branching fractions.

The CKM analysis performed in this paper is threefold: the first goal of the global CKM fit is to probe the validity
of the SM, that is to quantify the agreement between the SM and the experimental information; if this is confirmed,
one secondly enters the metrology phase where allowed ranges for the CKM matrix elements and related quantities
are determined, assuming explicitly the SM to be correct; finally, within an extended theoretical framework, one may
search for signals of New Physics and constrain parameters of specific New Physics scenarios.

Analyzing data in a well defined theoretical scheme ceases to be a straightforward task when one moves away from
Gaussian statistics. This is the case for the theoretically limited precision on the SM predictions of the neutral K and
B mixing observables and, to a lesser extent, for the semileptonic decay rates of B decays to charmed and charmless
final states. Also the interpretation of results on CP violation in terms of the UT angles often invokes unknown phases
occurring in absorptive parts of non-leptonic transitions. The statistical approach Rfit developed and described in
detail in [6] treats these uncertainties in a frequentist framework, which allows one to determine confidence levels. The
ensemble of the statistical analyses reported here is realized with the use of the program package CKMfitter2.

This paper is the second edition [6] of our effort to collect all significant information on the CKM matrix and to
combine it in a global CKM fit [8–10]. All figures given in this document as well as partially updated results can be
found on the CKMfitter web site [7].

The paper is organized as follows. Part I provides a brief introduction of the CKM matrix and mainly serves to
define the conventions adopted in this paper. We review in Part II the statistical approach and the analysis tools
implemented in CKMfitter, the understanding of which is necessary for an adequate interpretation of the results
derived in this work. Part III first defines the observables that are used as input in the so-called “standard CKM fit”,
which is defined as the global CKM fit that includes only those observables, which provide competitive constraints and
of which the SM prediction can be considered to be quantitatively under control. We put emphasis on the discussion
of the theoretical uncertainties. This introduction is followed by a compendium of numerical and graphical results of
the standard CKM fit for all parameters and observables of the electroweak sector that significantly depend on the
CKM matrix. Beginning with Part IV we perform rather detailed investigations of specific subsystems, related to CP
violation in the quark sector and to the Unitarity Triangle, with emphasis on the discussion of observables not used
in the standard CKM fit. We study direct CP violation in the kaon system and specifically derive constraints on the
non-perturbative bag parameters. We discuss the impact of the measurement of rare kaon decays and give an outlook
into the future where we attempt to quantify the expected uncertainties. Part V displays the constraints related to
the Unitarity Triangle angle γ from the time-dependent analysis of B0 → D(∗)±π∓ decays and the Dalitz analysis of
B+ → D0K+. Part VI describes in detail the analysis of charmless B decays to ππ, Kπ, ρπ and ρρ, which, besides
the global CKM fit, represents a central pillar of this work. We discuss constraints on the CP -violating CKM phase
using various phenomenological and theoretical approaches based on flavor symmetries and factorization. In Part VII
we use a model-independent parameterization of a large class of New Physics effects in both B0B0 mixing and B
decays, namely in the b → d and b → s gluonic penguin amplitudes, to perform a tentative numerical analysis. In the
appendix to this work we describe the frequentist treatment of the measurement of B0

sB
0
s oscillation incorporated in

our CKM fit, and we propose a novel method to handle the problem of (apparently) inconsistent measurements.

1 The CKM matrix

Invariance under local gauge transformation prevents the bare masses of leptons and quarks to appear in the SU(3)×
SU(2)×U(1) Lagrange density of the SM. Instead, the spontaneous breakdown of electroweak symmetry dynamically
generates masses for the fermions due to the Yukawa coupling of the fermion fields to the Higgs doublet. Since the
latter has a non-vanishing vacuum expectation value, the Yukawa couplings g give rise to the 3 × 3 mass matrices

Mi =
vgi√

2
, (1)

with i = u(d) for up(down)-type quarks and i = e for the massive leptons. To move from the basis of the flavor
(electroweak) eigenstates to the basis of the mass eigenstates, one performs the transformation

Uu(d,e)Mu(d,e)Ũ
†
u(d,e) = diag

(
mu(d,e),mc(s,µ),mt(b,τ)

)
, (2)

where Ui and Ũi are unitary complex rotation matrices and the masses mi are real. The neutral-current part of the
Lagrange density in the basis of the mass-eigenstates remains unchanged (i.e., there are no flavor-changing neutral

2 CKMfitter is a framework package that hosts several statistical approaches to a global CKM fit and the interpretation of
CP -violation results. It is available to the public [7]. Please contact the authors for more information.
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currents present at tree level), whereas the charged current part of the quark sector is modified by the product of the
up-type and down-type quark mass matrices,

V = UuU
†
d , (3)

which is the CKM mixing matrix. By convention, V operates on the −1/3 charged down-type quark mass eigenstates

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (4)

and, being the product of unitary matrices, V itself is unitary

V V † = I . (5)

There exists a hierarchy between the elements of V both for their value (the diagonal elements dominate) and their
errors (since they dominate, they are better known). The unitarity and the phase arbitrariness of fields reduce the
initial nine complex elements of V to three real numbers and one phase, where the latter accounts for CP violation. It is
therefore interesting to over-constrain V since deviations from unitarity would reveal the existence of new generation(s)
or new couplings.

The charged current couplings among left-handed quark fields are proportional to the elements of V . For right-
handed quarks, there exist no W boson interaction in the SM and the Z, photon and gluon couplings are flavor
diagonal. For left-handed leptons the analysis proceeds similarly to the quarks with the notable difference that, since
the neutrinos are (almost) massless, one can choose to make the same unitary transformation on the left-handed
charged leptons and neutrinos so that the analog of V in the lepton sector becomes the unit matrix.

There are many ways of parameterizing the CKM matrix in terms of four parameters. The following section
summarizes the most popular representations.

1.1 The Standard Parameterization

The Standard Parameterization of V was proposed by Chau and Keung [11] and is advocated by the Particle Data
Group (PDG) [12]. It is obtained by the product of three (complex) rotation matrices, where the rotations are
characterized by the Euler angles θ12, θ13 and θ23, which are the mixing angles between the generations, and one
overall phase δ 3

V =


 c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 (6)

where cij = cos θij , sij = sin θij for i < j = 1, 2, 3. This parameterization strictly satisfies the unitarity relation (5).

1.2 The Wolfenstein parameterization

Following the observation of a hierarchy between the different matrix elements, Wolfenstein [3] proposed an expansion
of the CKM matrix in terms of the four parameters λ, A, ρ and η (λ � |Vus| ∼ 0.22 being the expansion parameter),
which is widely used in contemporary literature, and which is the parameterization employed in this work and in
CKMfitter. We use in the following as definitions to all orders in λ [4]

s12 ≡ λ ,

s23 ≡ Aλ2 , (7)

s13e
−iδ ≡ Aλ3(ρ− iη) ,

inserted into the standard parameterization (6), so that unitarity of the CKM matrix is achieved to all orders4.

3 This phase δ is a CP -violating phase; it should not be confused with the CP -conserving hadronic phases that will be
introduced later with the same symbol.

4 The Taylor expansion of (7), inserted into (6), up to order O(λ9) reads

Vud = 1 − 1
2
λ2 − 1

8
λ4 − 1

16
λ6 (1 + 8A2(ρ2 + η2)

)− 1
128

λ8 (5 − 32A2(ρ2 + η2) ,



The CKMfitter Group: CP violation and the CKM matrix 7

1.3 The Jarlskog invariant

It was shown by Jarlskog [13] that the determinant of the commutator of the up-type and down-type unitary mass
matrices (1) reads

det[Mu,Md] = −2iFuFdJ , (8)

with Fu(d) = (mt(b) −mc(s))(mt(b) −mu(d))(mc(s) −mu(d))/m3
t(b). The phase-convention independent measurement of

CP violation, J , is given by

Im
[
VijVklV

∗
ilV

∗
kj

]
= J

3∑
m,n=1

εikmεjln , (9)

where Vij are the CKM matrix elements and εikm is the total antisymmetric tensor. One representation of (9) reads,
for instance, J = Im[VudVcsV

∗
usV

∗
cd]. A non-vanishing CKM phase and hence CP violation necessarily requires J �= 0.

The Jarlskog parameter expressed in the Standard Parameterization (6) reads

J = c12c23c
2
13s12s23s13sinδ , (10)

and, using the Wolfenstein parameterization, one finds

J = A2λ6η
(
1 − λ2/2

)
+ O(λ10) ∼ 10−5 .

The empirical value of J is small compared to its mathematical maximum of 1/(6
√

3) � 0.1 showing that CP violation
is suppressed as a consequence of the strong hierarchy exhibited by the CKM matrix elements. Remarkably, to account
for CP violation (see (8)) requires not only a non-zero J but also a non-degenerated quark-mass hierarchy. Equal masses
for at least two generations of up-type or down-type quarks would eliminate the CKM phase.

Phase convention invariance of the V -transformed quark wave functions is a requirement for physically meaningful
quantities. Such invariants are the moduli |Vij |2 and the quadri-products VijVklV

∗
ilV

∗
kj (cf. the Jarlskog invariant J).

Non-trivial higher order invariants can be reformulated as functions of moduli and quadri-products (see, e.g., [14]).
Indeed, (9) expresses the fact that, owing to the orthogonality of any pair of different rows or columns of V , the
imaginary parts of all quadri-products are equal up to their sign. We will use phase-invariant representations and
formulae throughout this paper.

2 The Unitarity Triangle

The allowed region in the ρ and η space can be elegantly displayed by means of the Unitarity Triangle (UT) described
by the rescaled unitarity relation between the first and the third column of the CKM matrix (i.e., corresponding to
the B meson system)

VudV
∗
ub

VcdV ∗
cb

+
VcdV

∗
cb

VcdV ∗
cb

+
VtdV

∗
tb

VcdV ∗
cb

= 0 . (12)

Note that twice the area of the non-rescaled UT corresponds to the Jarlskog parameter J . This identity provides a
geometrical interpretation of the phase convention invariance of J : a rotation of the CKM matrix rotates the UT
accordingly while leaving its area, and hence J is invariant. It is the remarkable property of the UT in the B system
that its three sides are governed by the same power of λ and A (so that the sides of the rescaled UT (12) are of order
one), which predicts large CP -violating asymmetries in the B sector. As a comparison, the corresponding UT for the

Vus = λ− 1
2
A2λ7(ρ2 + η2) ,

Vub = Aλ3(ρ− iη) ,

Vcd = −λ+
1
2
A2λ5 (1 − 2(ρ+ iη)) +

1
2
A2λ7(ρ+ iη) ,

Vcs = 1 − 1
2
λ2 − 1

8
λ4(1 + 4A2) − 1

16
λ6 (1 − 4A2 + 16A2(ρ+ iη)

)− 1
128

λ8 (5 − 8A2 + 16A4) ,
Vcb = Aλ2 − 1

2
A3λ8 (ρ2 + η2) ,

Vtd = Aλ3 (1 − ρ− iη) +
1
2
Aλ5(ρ+ iη) +

1
8
Aλ7(1 + 4A2)(ρ+ iη) ,

Vts = −Aλ2 +
1
2
Aλ4 (1 − 2(ρ+ iη)) +

1
8
Aλ6 +

1
16
Aλ8 (1 + 8A2(ρ+ iη)

)
,

Vtb = 1 − 1
2
A2λ4 − 1

2
A2λ6 (ρ2 + η2)− 1

8
A4λ8 .
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R t

(ρ,η)

γ

α

β
ρ

η

Ru

(0,0)                                                     (1,0)

Fig. 1. The rescaled Unitarity Triangle in the Wolfenstein parameteri-
zation

kaon sector is heavily flattened

0 =
VudV

∗
us

VcdV ∗
cs

+
VcdV

∗
cs

VcdV ∗
cs

+
VtdV

∗
ts

VcdV ∗
cs

∼ O

(
λ

λ

)
+O (1) +O

(
A2λ5

λ

)
, (13)

exhibiting small CP asymmetries. The UT (12) is sketched in Fig. 1 in the complex (ρ, η) plane, where the apex is
given by the following phase-convention independent definition, to all orders in λ [4],

ρ+ iη ≡ −VudV
∗
ub

VcdV ∗
cb

, (14)

of which the inverse reads to all orders5

ρ+ iη =
√

1 −A2λ4(ρ+ iη)√
1 − λ2 [1 −A2λ4(ρ+ iη)]

. (17)

Equation (17) is the definition used in CKMfitter. The sides Ru and Rt of the UT (the third side being normalized to
unity) read to all orders

Ru =
∣∣∣∣VudV

∗
ub

VcdV ∗
cb

∣∣∣∣ =
√
ρ2 + η2 , (18)

Rt =
∣∣∣∣ VtdV

∗
tb

VcdV ∗
cb

∣∣∣∣ =
√

(1 − ρ)2 + η2 . (19)

The three angles, α, β, γ, of the UT are defined by

α = arg
[
− VtdV

∗
tb

VudV ∗
ub

]
, β = arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
, γ = arg

[
−VudV

∗
ub

VcdV ∗
cb

]
, (20)

and the CKM phase in the Standard Parameterization (6) reads δ = γ + A2λ4η + O(λ6). The relations between the
angles and the ρ, η coordinates, again to all orders in λ, are given by

cos γ = ρ/Ru , sin γ = η/Ru , (21)
cosβ = (1 − ρ)/Rt , sinβ = η/Rt , (22)
α = π − β − γ . (23)

A graphical compilation of the most relevant present and future constraints (without errors) is displayed in Fig. 2.
Some “standard” values for the theoretical parameters are used for this exercise in order to reproduce compatibility
between the constraints.

Over-constraining the unitary CKM matrix aims at validating the three-generation SM. The interpretation of these
constraints requires a robust statistical framework which protects against misleading conclusions. The following part
describes the statistical approach applied for the analysis reported in this work.

5 Expanding (14) in λ gives [4]

ρ = ρ− 1
2
ρλ2 +

(
1
2
A2ρ− 1

8
ρ−A2 (ρ2 − η2))λ4 + O(λ6) , (15)

η = η − 1
2
ηλ2 +

(
1
2
A2η − 1

8
η − 2A2ρη

)
λ4 + O(λ6) . (16)



The CKMfitter Group: CP violation and the CKM matrix 9

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

εK

εK

K0→π0νν

ε,/εK , K0
 L→π0νν

∆md

|Vub/Vcb|

sin 2α

sin 2α

sin 2β

sin 2β

K+→π+νν

K+→π+νν

sin γ sin γ

ρ

η

α

βγ

Fig. 2. Constraints in the unitarity plane
for the most relevant observables. The the-
oretical parameters used correspond to some
“standard” set chosen to reproduce compati-
bility between the observables

Part II
The statistical approach Rfit

The statistical analysis performed in this paper is entirely based on the frequentist approach Rfit described in detail
in [6] and recalled below.

We consider an analysis involving a set of Nexp measurements collectively denoted by xexp = {xexp(1), . . . ,
xexp(Nexp)}, described by a set of corresponding theoretical expressions xtheo = {xtheo(1), . . . , xtheo(Nexp)}. The
theoretical expressions xtheo are functions of a set of Nmod parameters ymod = {ymod(1), . . . , ymod(Nmod)}. Their
precise definition is irrelevant for the present discussion (cf. Sect. III.2 for details) besides the fact that:
– a subset of Ntheo parameters within the ymod set are fundamental and free parameters of the theory (i.e.,

the four CKM unknowns in the SM, the top quark mass, etc.); these are denoted ytheo, where ytheo =
{ytheo(1), . . . , ytheo(Ntheo)}.

– the remaining NQCD = Nmod − Ntheo parameters are due to our present inability to compute precisely strong
interaction quantities (e.g., fBd

, Bd, etc.), and are denoted yQCD, where yQCD = {yQCD(1), . . . , yQCD(NQCD)}.
There are three different goals of the global CKM analysis:
1. within the SM, to quantify the agreement between data and the theory, as a whole.
2. within the SM, to achieve the best estimate of the ytheo parameters: that is to say to perform a careful metrology

of the theoretical parameters.
3. within an extended theoretical framework, e.g. Supersymmetry, to search for specific signs of New Physics by

quantifying the agreement between data and the extended theory, and by pinning down additional fundamental
and free parameters of the extended theory.

These goals imply three distinct statistical treatments all of which rely on a likelihood function meant to gauge the
agreement between data and theory.

1 The likelihood function

We adopt a χ2-like notation and denote

χ2(ymod) ≡ −2 ln(L(ymod)) , (24)
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where the likelihood function, L (defined below), is the product of two contributions:

L(ymod) = Lexp(xexp − xtheo(ymod)) · Ltheo(yQCD) . (25)

The first term, the experimental likelihood Lexp, measures the agreement between xexp and xtheo, while the second
term, the theoretical likelihood Ltheo, expresses our present knowledge of the yQCD parameters.

It has to be recognized from the outset that the χ2 of (24) is a quantity that can be misleading. In general, using
”Prob” the well known routine from the CERN library, one cannot infer a confidence level (CL) from the above χ2

value using

CL = Prob(χ2(ymod), Ndof) , (26)

=
1√

2NdofΓ (Ndof/2)

∞∫
χ2(ymod)

e−t/2tNdof/2−1 dt . (27)

This is because neither Lexp nor Ltheo (they are further discussed in the sections below) are built from purely Gaussian
measurements.

– In most cases Lexp should handle experimental systematics, and, in some instance, it has to account for inconsistent
measurements.

– In practice, Ltheo relies on hard to quantify educated guesswork, akin to experimental systematic errors, but in
most cases even less well defined.

The first limitation is not specific to the present analysis and is not the main source of concern. The second limitation
is more challenging: its impact on the analysis is particularly strong with the data presently available. The statistical
treatment Rfit is designed to cope with both of the above limitations. Notwithstanding its attractive features, the Rfit
scheme does not offer a treatment of the problem at hand free from any assumption: an ill-defined problem cannot be
dealt with rigorously. However the Rfit scheme extracts the most out of simple and clear-cut a priori assumptions.

1.1 The experimental likelihood

The experimental component of the likelihood is given by the product

Lexp(xexp − xtheo(ymod)) =
Nexp∏
i,j=1

Lexp(i, j) , (28)

where the Nexp individual likelihood components Lexp(i, j) account for measurements that may be independent or
not.

Ideally, the likelihood components Lexp(i) are independent Gaussians

Lexp(i) =
1√

2πσexp(i)
exp

[
−1

2

(
xexp(i) − xtheo(i)

σexp(i)

)2
]
, (29)

each with a standard deviation given by the experimental statistical uncertainty σexp(i) of the ith measurement.
However, in practice, one has to deal with correlated measurements and with additional experimental and theoretical
systematic uncertainties.

– Experimental systematics are assumed to take the form of a possible biasing offset the measurement could be
corrected, were it known. Their precise treatment is discussed in Sect. II.6. In practice, these systematics are
usually added in quadrature to the statistical errors.

– Theoretical systematics, when they imply small effects, are treated as the experimental ones. However because most
theoretical systematics imply large effects and affect in a non-linear way the xtheo prediction, most of them are
dealt with through the theoretical likelihood component Ltheo (cf. Sect. II.1.2).

Identical observables and consistency: when several measurements refer to the same observable (e.g., various
measurements of ∆md) they have to be consistent, independently of the theoretical framework used for the analysis.
Similarly, when several measurements refer to different observables that are linked to the same ytheo parameter, e.g.,
|Vud| and |Vus|, or determinations of |Vub| stemming from different observables, or measurements of sin 2β obtained from
similar B decays, one may decide to overrule possible disagreement by requiring the measurements to be consistent.
By doing so, one is deliberately blinding oneself to possible New Physics effects, which may have revealed themselves
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otherwise. Clearly, such overruling should be applied with great caution, and it should be well advertized whenever
it occurs. The method to deal with this imposed consistency is to account for the measurements simultaneously by
merging them into a single component, and applying an “appropriate” rescaling method.

The normalization of each individual likelihood component is chosen such that its maximal value is equal to
one. This is not important for the analysis, but it is convenient: it ensures that a measurement does not contribute
numerically to the overall χ2 value if it is in the best possible agreement with theory, and that the (so-called) χ2 takes
only positive values. In the pure Gaussian case, this simply implies dropping the normalization constant of (29): one
then recovers the standard χ2 definition.

1.2 The theoretical likelihood

The theoretical component of the likelihood is given by the product

Ltheo(yQCD) =
NQCD∏
i=1

Ltheo(i) , (30)

where the individual components Ltheo(i) account for the imperfect knowledge of the yQCD parameters (e.g., fBd
) while

more or less accurately including known correlations between them (e.g., fBd
/fBs). Ideally, one should incorporate

in Lexp measurements from which constraints on yQCD parameters can be derived. By doing so, one could remove
altogether the theoretical component of the likelihood. However usually there is no such measurement: the a priori
knowledge on the yQCD stems rather from educated guesswork. As a result, the Ltheo(i) components are incorporated
by hand in (30) and they can hardly be treated as probability distribution functions (PDF). In effect, their mere
presence in the discussion is a clear sign that the problem at hand is ill-defined. It demonstrates that here, a critical
piece of information is coming neither from experimental, nor from statistically limited computations, but from the
minds of physicists. At present, these components play a leading role in the analysis and it is mandatory to handle
them with the greatest caution.

In the default scheme, Range Fit (Rfit), we propose that the theoretical likelihoods Ltheo(i) do not contribute
to the χ2 of the fit while the corresponding yQCD parameters take values within allowed ranges6 denoted [yQCD]. The
numerical derivation of these ranges is discussed in Sects. II.6 and III.2. Most of them are identified to the ranges

[yQCD − σsyst , yQCD + σsyst] , (31)

where σsyst is the theoretical systematics evaluated for yQCD. Hence yQCD values are treated on an equal footing,
irrespective of how close they are to the edges of the allowed range. Instances where even only one of the yQCD
parameters lies outside its nominal range are not considered.

This is the unique, simple and clear-cut assumption made in the Rfit scheme: yQCD parameters are bound to remain
within predefined allowed ranges. The Rfit scheme departs from a perfect frequentist analysis only because the allowed
ranges [yQCD] do not extend to the whole physical space where the parameters could a priori take their values7.

This unique and minimal assumption, is nevertheless a strong constraint: all the results obtained should be under-
stood as valid only if all the assumed allowed ranges contain the true values of their yQCD parameters. However, there
is no guarantee that this is the case, and this arbitrariness should be kept in mind.

2 Metrology

For metrology, one is not interested in the quality of the agreement between data and the theory as a whole. Rather,
taking for granted that the theory is correct, one is only interested in the quality of the agreement between data and
various realizations of the theory, specified by distinct sets of ymod values. More precisely, as discussed in Sect. II.2.1,
the realizations of the theory one considers are under-specified by various subsets of so-called relevant parameter
values. In the following we denote

χ2
min;ymod

, (32)

the absolute minimum value of the χ2 function of (24), obtained when letting all Nmod parameters free to vary.

6 Note that the yQCD parameters can also have errors with (partly) statistical components. Examples for these are parameters
obtained by Lattice calculations. The treatment of this case is described in Sect. II.6.

7 Not all yQCD parameters need to be given an a priori allowed range, e.g., values taken by final state strong interaction
phases appearing in B decays are not necessarily theoretically constrained.
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In principle, this absolute minimum value does not correspond to a unique ymod location. This is because the
theoretical predictions used for the analysis are affected by more or less important theoretical systematics. Since these
systematics are being handled by means of allowed ranges, there is always a multi-dimensional degeneracy for any
value of χ2.

For metrological purposes one should attempt to estimate as best as possible the complete ymod set. In that case,
we use the offset-corrected χ2

∆χ2(ymod) = χ2(ymod) − χ2
min;ymod

, (33)

where χ2(ymod) is the χ2 for a given set of model parameters ymod. The minimum value of ∆χ2(ymod) is zero, by
construction. This ensures that, to be consistent with the assumption that the SM is correct, CLs equal to unity are
obtained when exploring the ymod space.

A necessary condition is that the CL constructed from ∆χ2(ymod) provides correct coverage, that is, the CL interval
for a parameter under consideration covers the true parameter value with a frequency of 1−CL if the measurement(s)
were repeated many times. This issue will be further adressed in several subsections.

2.1 Relevant and less relevant parameters

Usually, one does not aim at a metrology of all the ymod values, but only in a subset of them. This can be for two
distinct reasons:

– the other parameters being deemed less relevant. For instance, in the SM, CP violation can be summarized by the
value taken by the Jarlskog parameter J , or by the value of the CP -violating phase determined by the parameters
ρ and η in the Wolfenstein parameterization: the other CKM parameters and the yQCD parameters may thus
conceivably be considered of lower interest.

– parameters that cannot be significantly constrained by the input data of the CKM fit. This is the case for most of
the non-CKM parameters: yQCD parameters, but also the quark masses, etc.

In practice, the ymod parameters often retained as relevant for the discussion are ρ and η. The other parameters
λ, A, the quark masses (etc.) and all the yQCD are considered as subsidiary parameters, to be taken into account in the
analysis, but irrelevant for the discussion8. In that case, the aim of the metrological stage of the analysis is to set CLs
in the (ρ, η) plane.

We denote by a the subset of Na parameters under discussion (e.g., a = {ρ, η}) and µ the Nµ remaining ymod
parameters9. The goal is to set CLs in the a space, irrespective of the µ values.

The smaller the region in the a space where the CL is sizable (above CLcut = 0.05, say) the stronger the constraint
is. The ultimate (and unattainable) goal is to shrink the allowed region to a point: it would then correspond to the
’true’ a. This means that one seeks to exclude the largest possible region of the a space. To do so, for a fixed value
of a, one has to find the µ values that maximize the agreement between data and theory, and set the CL on a at the
value corresponding to this optimized µ

CL(a) = Maxµ{CL(a, µ)} . (34)

Proceeding that way, one uses the most conservative estimate for a given a point: this point will be engulfed in the
excluded region only if CL(a, µ) < CLcut, ∀µ. As long as the theoretical likelihoods contain the true value of the yQCD
parameters, the CL obtained has correct coverage and is to be understood as an upper limit of a CL.

2.2 Metrology of relevant parameters

According to the above discussion, we denote
χ2

min; µ(a) , (35)

the minimum value of the χ2 function of (24), for a fixed value of a, when letting all µ parameters free to vary. For
metrological purposes, we use the offset-corrected χ2

∆χ2(a) = χ2
min; µ(a) − χ2

min;ymod
, (36)

the minimum value of which is zero, by construction.
8 This point of view does not mean that the role of the yQCD is irrelevant. In particular, if the agreement between data and

theory is not convincing one needs to set CLs in the yQCD space.
9 It is worth stressing that this splitting is arbitrary and that it can be changed at will: for instance one may decide to focus

only on a = {J}, or to consider a = {sin 2α, sin 2β} or other experimental observables. In practice, constraints on observables
that are functions of the ymod parameters are obtained by means of the technique of Lagrange multipliers.
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2.2.1 Gaussian case

In a Gaussian situation, one directly obtains the CL for a as

CL(a) = P(a) = Prob(∆χ2(a), Ndof) , (37)

where Ndof = min(N eff
exp −Nµ, Na) and N eff

exp is the effective number of constraints (observables).
To illustrate the use of Ndof , let us first consider the standard CKM fit (see Part III). Several observables constrain

the (ρ, η) plane so that the number of degrees of freedom exceeds the dimension of the a space (Na). The offset-
corrected ∆χ2(a), defined in (36), reduces the number of degrees of freedom to the dimension Na = 2 of the (ρ, η)
plane. However if one is to consider the constraint of only one observable, e.g., sin 2β in the (ρ, η) plane, the number
of degrees of freedom is one, i.e., it is smaller than the dimension of the a space. Indeed, given sin 2β and, e.g., ρ, the
value of η is fixed.

Other cases exist where the situation is less clear-cut: for instance, in the presence of penguins, the C+−
ππ parameters

in B0 → π+π− decays may be non-zero and hence acquires some information on the unitarity angle α. One would
thus conclude that the appropriate number of degrees of freedom should be Ndof = 2. However in comparison with
the S+−

ππ parameter, the α constraint from C+−
ππ is insignificant, so that using Ndof = 1 is the better approximation.

One concludes that even in a Gaussian case, ill-posed problems can occur, which must be individually studied with
(toy) Monte Carlo simulation.

2.2.2 Non-Gaussian case

In a non-Gaussian situation, one has to consider ∆χ2(a) as a test statistic, and one must rely on a Monte Carlo
simulation to obtain its expected distribution in order to compute CL(a). As further discussed in Sect. II.3, this does
not imply taking a Bayesian approach and to make use of PDFs for the unknown theoretical parameters µ.

For the sake of simplicity, we use (37) in the present work with one exception discussed below. This implies that the
experimental component Lexp(xexp − xtheo(ymod)) is free from non Gaussian contributions and inconsistent measure-
ments. However the ∆χ2(a) function itself does not have to be parabolic. What matters is that the Lexp components
are derived from Gaussian measurements, being understood that no Ltheo components are present. Applying (37)
using Lexp may lead to an under-coverage of the CL for a branching fraction measurement with a very small number
of signal events. That is, the interval belonging to a given CL value constructed in this way covers the true branching
fraction value with a probability lower than 1 − CL.

Under the assumption that the measurement is free from background, the probability to measure Nobs events for
a true number of Ntrue events is given by the Poissonian probability distribution

f(Nobs;Ntrue) =
e−NtrueNNobs

true

Nobs!
. (38)

One prominent example is the measurement of Nobs = 2 rare K+ → π+νν̄ events with almost vanishing background
probability by the E787 collaboration [15] (see Sect. IV.2, ignoring the recent result from E949 [16] in the discussion
here). In this case, the experimental likelihood Lexp(Ntrue) for a true number of Ntrue events given the number of Nobs
observed events is the same equation (38). The corresponding CL is obtained by means of the following recipe.

1. In the pure Poissonian case, the exact central confidence interval [a, b] at CL = 2α with probabilities P (n ≥
Nobs; a) =

∑∞
n=Nobs

f(n; a) = α and P (n ≤ Nobs; b) =
∑Nobs

n=0 f(n; b) = α is obtained by solving the following
equations for a and b, respectively:

α =
∞∑

n=Nobs

e−aan

n!
= 1 −

Nobs−1∑
n=0

e−aan

n!
, (39)

β =
Nobs∑
n=0

e−bbn

n!
. (40)

Their inverse reads

a =
1
2
F−1

χ2 (α;Ndof = 2Nobs) , (41)

b =
1
2
F−1

χ2 (1 − α;Ndof = 2(Nobs + 1)) , (42)
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where Fχ2 is the cumulative distribution for a χ2 distribution for Ndof degrees of freedom. The quantities F−1
χ2

can be calculated with the CERN library function CHISIN. Using (41) and (42) we construct the correct CL as a
function of Ntrue.

2. The experimental likelihood, Linp
exp, is obtained from the inverse CL−1 = P−1(−2 lnLinp

exp, 1). In this way, the CKM
fit can again use (37) to infer a CL for the Poissonian case with very small statistics.

The situation becomes more complicated if the statistics is very small and, in addition, the amount of background
is not negligible and possibly only known with limited precision. In this case, there are two possible ways to proceed.
Either the experiment publishes a CL which then can be again translated into likelihood function using CL−1 (see
above). This has been done, for example, by the BNL experiment E949 [16] (see Sect. IV.2) the successor of E747. Or,
if this information is not available, the CL has to be constructed by means of a toy Monte Carlo simulation provided
that the experimental information needed has been published.

2.2.3 Physical boundaries

Physical boundaries: in cases where the a value space is bounded, e.g., sin 2β ∈ [−1, 1], the confidence level P(a) is
modified close to the boundaries, even in a Gaussian case. In general, the presence of physical boundaries improves the
parameter knowledge. The easiest way to derive the appropriate CL is to use Monte Carlo techniques. The procedure
is as follows:

1. choose the coordinate a0 in the (bounded) a space at which the CL(a0) shall be determined.
2. determine for the measurements at hand the offset-corrected ∆χ2(a0) using (36).
3. generate Monte Carlo measurements that fluctuate according to the experimental likelihoods Lexp.
4. determine the global minimum χ2

min;ymod
[MC] for each set of measurements by leaving all ymod parameters free to

vary.
5. determine the offset-corrected ∆χ2(a0)[MC] for each set of measurements using (36).
6. from the sample of Monte Carlo simulations, one builds Fa0(∆χ

2(a0)[MC]), the distribution of ∆χ2(a0)[MC],
normalized to unity.

7. the CL referring to the coordinate a0 is then given by

P(a0) ≤
∫

∆χ2≥∆χ2(a0)

Fa0(∆χ
2) d∆χ2 . (43)

An illustration of the difference between a straight application of (37) and the accurate Monte Carlo result is given for
various measurements of a hypothetical quantity sin(x) in Fig. 3. The effects can be significant close to the boundaries.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

C
L

Prob(..)

toy MC

sin(x) = –2 ± 1 sin(x) = –1 ± 1

sin(x)

sin(x) = –0.5 ± 1 sin(x) = 0 ± 1

-1 -0.5 0 0.5 1

Fig. 3. Difference between (37) and a Monte Carlo evaluation of the confidence level for various measurements of a hypothetical
quantity sin(x). The Monte Carlo evaluation takes into account the physical boundaries of the observable
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The inclusion of the physical boundaries in a one-dimensional case is semi-analytically realized in CKMfitter as
described in the digression below10. The results are identical to the toy Monte Carlo simulation technique introduced
above.
10 Digression. We consider a measurement xm ± 1 of an observable that is confined to the interval [xmin, xmax], and derive
the confidence level of a test value x ∈ [xmin, xmax]. The corresponding test statistic is given by

∆χ2 = χ2 − χ2
min , with χ2 = (x− xm)2 , (44)

and we aim at the solution of the convolution integral

CL(x) =

∞∫
∆χ2

∞∫
−∞

δ
(
(x− x′

m)2 −∆χ2′
)

1√
2π
e− 1

2 (x′
m−xm)2d∆χ2′dx′

m

∞∫
0

∞∫
−∞

δ
(
(x− x′

m)2 −∆χ2′) 1√
2π
e− 1

2 (x′
m−xm)2d∆χ2′dx′

m

. (45)

The integration of (45) leads to multiple Heaviside step functions, so that several cases must be distinguished:
– Measurement inside the allowed interval CL(xmin ≤ xm ≤ xmax):

Using P(χ2) ≡ Prob(χ2, 1) = erfc(
√
χ2/2) the CL obtained ignoring the possibly non-zero value of χ2

min (the χ2 returned
by the procedure below is offset-corrected into a ∆χ2 for metrology reasons in CKMfitter), and denoting Px[x1, x2] the
probability that x occurs in the range [x1, x2] (taken to be negative if x1 > x2)

Px[x1, x2] =




1
2

(
erfc

(|x− x1|/
√

2
)− erfc

(|x− x2|/
√

2
))

if x < x1 ∧ x < x2

1
2

(
erfc

(|x− x2|/
√

2
)− erfc

(|x− x1|/
√

2
))

if x > x1 ∧ x > x2

1 − 1
2

(
erfc

(|x− x1|/
√

2
)

+ erfc
(|x− x2|/

√
2
))

elsewhere

(46)

one obtains for the different domains of x

CL =




P(χ2) if 1
2 (xm + xmin) ≤ x ≤ 1

2 (xm + xmax)

1
2P(χ2) if (x = xmin ∨ x = xmax) ∧ x 	= xm

P(χ2) − Px

[
1
2

(
x+ xmin − (x−xm)2

x−xmin

)
, 2x− xm

]
if x < 1

2 (xm + xmin)

P(χ2) − Px

[
2x− xm,

1
2

(
x+ xmax − (x−xm)2

x−xmax

)]
if x > 1

2 (xm + xmax)

(47)

– Measurement below the allowed interval CL(xm < xmin):

CL =




1 if x = xmin

P(χ2) − Px

[
2x− xm, x+

√
Σ
]

if

{
xmin < x ≤ 1

2 (xmin + xmax) ∧
x+ xmin + (xmax−x)2

xmin−x
≤ 2xm

}

P(χ2) − Px

[
[2x− xm,

1
2

(
x+ xmax + Σ

xmax−x

)]
if

{
xmin < x ≤ 1

2 (xmin + xmax) ∧
x+ xmin + (xmax−x)2

xmin−x
> 2xm

}

P(χ2) − Px

[
2x− xm,

1
2

(
x+ xmax + Σ

xmax−x

)]
if x > 1

2 (xmin + xmax)

(48)

where Σ ≡ (x+ xmin − 2xm)(x− xmin).
– Measurement above the allowed interval CL(xm > xmax):

CL =




1 if x = xmax

P(χ2) − Px

[
x− √

Ξ, 2x− xm

]
if

{
1
2 (xmin + xmax) ≤ x < xmax ∧
x+ xmax + (xmin−x)2

xmax−x
≥ 2xm

}

P(χ2) − Px

[
1
2

(
x+ xmin + Ξ

xmin−x

)
, 2x− xm

]
if

{
1
2 (xmin + xmax) ≤ x < xmax ∧
x+ xmax + (xmin−x)2

xmax−x
< 2xm

}

P(χ2) − Px

[
1
2

(
x+ xmin + Ξ

xmax−x

)
, 2x− xm

]
if x < 1

2 (xmin + xmax)

(49)

where Ξ ≡ (2xm − x− xmax)(xmax − x).
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3 Probing the Standard Model

By construction, the metrological phase is unable to detect if the SM fails to describe the data. This is because
(36) wipes out the information contained in χ2

min;ymod
. This value is a measure (a test statistics) of the best possible

agreement between data and theory. The agreement can be quantified by the so-called p-value P(χ2
min;ymod

|SM): the
probability to observe a χ2 as large as or larger than χ2

min;ymod
if the Standard Model is the correct theory. Ideally, in a

pure Gaussian case, χ2
min;ymod

could be turned easily into a p-value referring to the SM as a whole in a straightforward
way

P(χ2
min;ymod

|SM) ≤ Prob(χ2
min;ymod

, Ndof) , (50)

with Ndof = N eff
exp −Nmod, if it were a positive value. The whole Standard Model being at stake, one should not rely on

(50), but use a Monte Carlo simulation to obtain the expected distribution of χ2
min;ymod

. The Monte Carlo simulation
proceeds as follows:

1. determine for the measurements at hand the global minimum χ2
min;ymod

and the corresponding ymod values, which
are assumed to be the true ones11

2. generate the xexp(i) for all measurements (i), following the individual experimental likelihood components Lexp(i),
having reset their central values to the values xexp(i) = xtheo(i) computed with the above ymod solution set.

3. in contrast to the above, the Ltheo component of the likelihood is not modified: their central values are kept to
their original settings. This is because these central values are not random numbers, but parameters contributing
to the definition of L.

4. compute the minimum of the χ2 by allowing all ymod to vary freely, as is done in the actual data analysis.
5. from this sample of Monte Carlo simulations, one builds FSM(χ2), the distribution of χ2

min;ymod
, normalized to

unity.
6. the p-value referring to the SM as a whole is then

P(χ2
min;ymod

|SM) ≤
∫

χ2≥χ2
min;ymod

FSM(χ2) dχ2 . (51)

4 Probing New Physics

If the above analysis establishes that the SM cannot accommodate the data, that is the p-value P(χ2
min;ymod

|SM)
is small, the next step is to probe the New Physics (NP) revealed by the observed discrepancy. The goal is akin
to metrology: it is to measure new physical parameters yNP (whose values, for example, are null if the SM holds)
complementing the set of ytheo parameters of the SM. The treatment is identical to the one of Sect. II.2, using
a = {yNP}. The outcome of the analysis is for example a 95% CL domain of allowed values for yNP defined, in a first
approximation, from (37)

CL(yNP) = Prob(∆χ2(yNP), NNP) ≥ 0.05 . (52)

Even if the SM cannot be said to be in significant disagreement with data, it remains worthwhile to perform this
metrology of new NP for the following reasons:

– it might be able to faster detect the first signs of a discrepancy between data and the SM if the theoretical extension
used in the analysis turns out to be the right one. The two approaches are complementary, the first (cf., Sect. II.3)
leading to a general statement about the agreement between data and the SM independently of any assumption
about the NP, the second being specific to a particular extension of the SM. In that sense, it is less satisfactory.
The two approaches can nevertheless disagree: the first may conclude that the SM is in acceptable agreement with
data, while the second may exclude the SM value yNP = 0, and, conversely, the first may invalidate the SM, while
the second may lead to a fairly good value of CL(yNP = 0) if the extension of the SM under consideration is not
on the right track.

– the most sensitive observables, and the precision to be aimed at for their determination cannot be derived by any
other means than by this type of analysis. When considering new experiments, it is therefore particularly valuable
to have a sensitive model of NP, to prioritize the effort and set the precision to be achieved.

11 As discussed above, in the presence of theoretical uncertainties various ymod realizations may yield identical theoretical
predictions. The choice made for a particular ymod solution (leading to χ2

min;ymod
) is irrelevant.
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5 Alternative statistical treatments

Several alternative statistical treatments are available and the reader is referred to [6] for a detailed discussion of the
merits and drawbacks of each of the methods. In the following, we only recall the ERfit method as a conservative
extension to Rfit, and briefly comment on the use of Bayesian methods.

5.1 The extended conservative method (ERfit)

The Rfit scheme uses Ltheo(i) functions that take only two values: either 1 within the allowed range, or 0 outside,
thereby restricting yQCD to the range [yQCD]. Instead, the extended ERfit scheme allows intermediate values between
0 and 1 for Ltheo(i). They are equal to 1 within [yQCD] (there, they do not contribute at all to the full χ2, and one
recovers the Rfit scheme) and drop smoothly to 0 outside. These functions are not treated as PDFs and hence the
ERfit scheme is not a Bayesian scheme.

The way the ERfit likelihood functions decrease down to zero is arbitrary: one needs to define a standard. The
proposed expressions for Ltheo(i) are presented in Sect. II.6. Because ERfit acknowledges the fact that the allowed
ranges should not be taken literally, it offers two advantages over Rfit:

– ERfit is more conservative than Rfit: by construction, a ERfit CL is always equal or larger than the corresponding
Rfit one, and its CL surface in the a space exhibits the same plateau of equal CL = 1.

– in the case where the SM appears to be ruled out by Rfit, the ERfit scheme is able to detect the yQCD parameter(s)
beyond the nominal allowed range that would restore an acceptable agreement between data and theory.

Despite the two above arguments in favor of ERfit, we chose Rfit as the standard scheme used in this paper rather
than ERfit: because it uses a simpler and unique prescription to incorporate theoretical systematics, it is less prone
to be confused with a Bayesian treatment.

5.2 The Bayesian treatment

The Bayesian treatment [8] considers L as a PDF, from which is defined F(a), the PDF of a, through the convolution

F(a) = C

∫
L(ymod) δ(a− a(ymod)) dymod , (53)

where the constant C is computed a posteriori to ensure the normalization to unity of F(a). In practice, the integral
can be obtained conveniently by Monte Carlo techniques12. For each point in the a space, one sets a confidence level
CL(a), for example according to:

CL(a) =
∫

F(a′)≤F(a)

F(a′) da′ . (54)

Other definitions for the domain of integration can be chosen.
New Physics is not meant to be detected by the Bayesian treatment: it is aimed at metrology mostly.

5.3 Comparison with Rfit

Although the graphical displays appear similar, the Bayesian treatment and the Rfit scheme are significantly different:
the meaning attached to a given CL value is not the same. For the Bayesian treatment, the CL is a quantity defined
for example by (54). The justification of this definition lies in the understanding that a CL value is meant to provide
a quantitative measure of our qualitative degree of belief. Whereas one understands qualitatively well what is meant
by degree of belief, because of its lack of formal definition, one cannot check that it is indeed well measured by the CL:
the argument is thus circular.

The key point in the Bayesian treatment is the use of (53), even though the likelihood contains theoretical com-
ponents. This implies that the yQCD parameters, which stem from theoretical computations, are to be considered as
random realizations of their true values. The PDFs of these “random” numbers are then drawn from guess-work (the
[yQCD] ranges do not fare better with respect to that.). For self-consistency, if one assumes that a large number of
theorists perform the same yQCD computation, the distribution of their results should then be interpreted as a deter-
mination of the yQCD PDF. Once injected in (53), this PDF, the shape of which contains no information on nature,

12 This convenience may sometimes boost the application of Bayesian techniques, since no use of sophisticated minimization
techniques is necessary.
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will be transformed into information pertaining to nature. This entails to a confusion between what is an experimental
result and what is a thinking result. Illustrations of this are given in the appendix of [6]13.

6 Likelihoods and systematic errors

So far, we have reviewed the basic formalism of the Rfit scheme. The treatment of experimental and theoretical
systematics is the subject of this section.

Let x0 be a quantity, which is not a random variable, but which is not perfectly known. We will consider two
quantities of this type.

– A theoretical parameter which is not well determined (e.g., x0 = fBd
): the theoretical prediction of an observable

depends on x0 (e.g., ∆MBd
).

– An experimental bias due to detector/analysis defects: the measurement should be corrected for this bias.

It is the purpose of this section to suggest a prescription of how to incorporate the limited knowledge of such quantities
into the analysis. The standard treatment of this problem relies on a χ2 analysis, which is satisfactory as long as the
degree of belief we put on the knowledge of the value of x0 is distributed like a Gaussian. However this is not
necessarily what is meant when one deals with systematic errors. Rather, the theorist (resp. the experimentalist) may
mean that the prediction (resp. the measurement) can take any value obtained by varying x0 at will within the range
[x0 − ζσo, x0 + ζσo] (denoted the allowed range below, where ζ is a constant scale factor of order unity and x0 is the
expected central value of x0), but that it is unlikely that x0 takes its true value outside the allowed range. This does
not imply that the possible values for x0 are equally distributed within the allowed range: they are not distributed at
all.

If a systematic error is given such a meaning, then the statistical analysis should treat all x0 values within the
allowed range on the same footing (which again does not imply with equal probability): this corresponds to the Rfit
scheme (with ζ = 1). On the other hand, it may be convenient to define specific tails instead of sharp cuts, thus
allowing the theoretical parameters to leave their allowed ranges, if needed: this corresponds to the ERfit scheme.

The idea is to move from a pure χ2 analysis to a log-likelihood one, redefining the χ2 to be

χ2 =
(
xexp − xtheo

σexp

)2

− 2 lnLsyst(x0) , (55)

where Lsyst(x0), hereafter termed the Hat function, is a function equal to unity for x0 within the allowed range.

6.1 The Hat function

The Hat function Lsyst(x0, κ, ζ) is a continuous function defined as

−2 lnLsyst(x0, κ, ζ) =




0 , ∀x0 ∈ [x0 ± ζσo](
x0 − x0

κσo

)2

−
(
ζ

κ

)2

, ∀x0 /∈ [x0 ± ζσo]
(56)

where the constant κ determines the behavior of the function outside the allowed range. For the Rfit scheme κ = 0 is
used. To define a standard κ can be chosen to be a function of ζ such that the relative normalization of Lsyst(x0, κ, ζ)

13 Methodogical problems that may appear with the use of Bayesian statistics in metrological CKM analyses are outlined
below.

– The convolution of several, arbitrary a priori theoretical PDFs can lead to the creation of seemingly accurate information
(the convolved PDF) out of no initial knowledge. A quantification of the uncertainty related to this information is impossible.

– All ymod parameters need a priori PDFs, also those that are to be determined by the fit. For instance, if the CKM parameters
are the physical unknowns of the global fit, the results obtained will depend on the parameterization chosen to have a, say,
uniform prior. This breaks a fundamental invariant of physics theories. For example, the CKM-related physics depends on
whether the CKM matrix is parameterized with the Euler angles & phase, or with the Wolfenstein parameters.

– It frequently occurs in the phenomenological description of B decays that a priori unknown strong-interaction phases
contribute to the ymod parameters. While this is no problem in Rfit (or ERfit), where these parameters are free to vary
within their 2π periodicity, it may exhibit biases in a Bayesian approach: in particular, in the presence of multiple unknown
phases, the CL obtained may depend on whether the validity range is chosen to be [−π, π] or [0, 2π] or any other 2π interval.
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for the Rfit scheme, the ERfit scheme, a convo-
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(hence taken as a PDF, following the Bayesian
approach) and a convolution of two Gaussians

(considered here, for the purpose of defining a standard, as a PDF) be equal to the one of a Gaussian of width σo

+∞∫
−∞

Lsyst(x0, κ, ζ) dx0 ·
ζ/

√
2∫

0

e−t2 dt =
√
π ζσ0 . (57)

The parameter κ is numerically computed as a function of ζ. For the limit ζ → 0 one obtains κ → 1, and the Hat
becomes a pure Gaussian. The ERfit scheme is defined by ζ = 1, for which one obtains κ � 0.8.

Examples of Hat functions with x0 = 0 and σo = 1 are shown on the left plot of Fig. 4. Being a likelihood and not
a PDF, Lsyst(x0) needs not be normalized to unity.

6.2 Combining statistical and systematic uncertainties

Having defined Lsyst(x0) one proceeds with the minimization of the χ2 of (55) by allowing x0 to vary freely.
For theoretical systematics, the result depends on the way x0 enters xtheo, and not much more can be said in

generality.
For experimental and theoretical systematics where x0 can be assumed to be an unknown offset14: the quantity to be

confronted to the theoretical prediction xtheo is simply xexp +x0. Omitting the details of straightforward calculations,
and assuming that x0 = 0 (otherwise xexp should be corrected for it), one obtains, after minimization of the χ2 with
respect to x0:

– | xexp − xtheo |≤ ζσo : χ2
min; x0

= 0 .

– ζσo ≤| xexp − xtheo |≤ ζσo(1 + (
σexp

κσo
)2) : χ2

min; x0
=
( | xexp − xtheo | −ζσo

σexp

)2

.

– | xexp − xtheo |≥ ζσo(1 + (
σexp

κσo
)2) : χ2

min; x0
=

(xexp − xtheo)2

σ2
exp + (κσo)2

−
(
ζ

κ

)2

.

In the limit ζ → 0 (and hence, κ → 1) only the third instance is met, and one recovers the usual rule of adding in
quadrature the statistical and the systematic uncertainties. Otherwise, the result is non-trivial. An example of the
effective likelihood expLsyst(xexp − xtheo) ≡ − 1

2χ
2
min; x0

(with x0 = 0 and σexp = σo = 1) is shown in the right hand
plot of Fig. 4 for the Rfit scheme, the ERfit scheme, a convolution of a Gaussian with a uniform distribution (hence
taken as a PDF, following the Bayesian approach) and a convolution of two Gaussians.

14 If systematics take the form of an unknown multiplicative factor, and this is often the case for theoretical uncertainties, a
treatment similar to the one discussed here applies.



20 The CKMfitter Group: CP violation and the CKM matrix

Part III
The Global CKM fit

1 Introduction

With the remarkable exceptions of sin 2β (see Sect. 2.10) and sin 2α (see Sect. 2.11), the experimental observables
that are presently used to constrain (ρ, η) depend on hadronic matrix elements, which have to be evaluated at a much
smaller energy than the weak interaction scale. Since the discovery of asymptotic freedom, Quantum Chromodynamics
(QCD) is well established as the quantum field theory of strong interaction. It has been tested to high precision in
the perturbative regime, where the coupling constant αS is small and allows one to build a systematic expansion.
Unfortunately, no general solution of QCD is known, and not even a well-controlled approximation is available (at
least in an analytical form) that would be valid for an arbitrary αS.

While it is far beyond the scope of this introduction to review the wealth of approaches to non-perturbative QCD,
it is useful to recall a few general techniques to evaluate the matrix elements that are relevant for quark flavor physics.
The theoretical methods can be classified, somewhat arbitrarily, into four categories: constituent quark models, QCD
sum rules, lattice simulations, and effective theories of QCD.

– Constituent quark models comprise, to a first approximation, methods that assume a fixed number of particles
and treat them in the framework of quantum mechanics. Multi-body wave functions, which satisfy bound state
potential equations, are constructed, and external operators that describe flavor transitions are represented in
terms of constituent quarks and then sandwiched between these wave functions.

– QCD sum rules rely on quark-hadron duality to identify a correlation function written in terms of quarks and
gluons with its representation as a sum over hadronic bound states. The desired matrix element is then isolated
from the rest of the sum and its contribution is controlled in various ways.

– Lattice simulations implement quantum field theory on an Euclidean space-time lattice. The path integrals that
represent correlation functions are then numerically evaluated with Monte Carlo methods.

– Effective theories of QCD exploit additional symmetries of full QCD in specific kinematic or parametric regimes.
Matrix elements are then related to others that are simpler to compute or to measure, up to corrections that are
suppressed by the typical symmetry breaking scale.

2 Inputs to the standard CKM fit

This section provides a compendium of the measurements and SM predictions entering the overall constrained CKM
fit, denoted standard CKM fit in the following. The corresponding numerical values used and the treatment of their
uncertainties within Rfit are summarized in Table 1. In cases where different independent measurements for an input
quantity are available, we multiply the corresponding (Rfit) likelihoods. Experimental and theoretical correlations, if
present and known, are taken into account if not stated otherwise.

2.1 |Vud|
The matrix element |Vud| has been extracted by means of three different methods: superallowed nuclear β-decays,
neutron β-decay and pion β-decay.

The most precise experimental determination of |Vud| comes from lifetime measurements of superallowed nuclear
β-decays with pure Fermi-transitions (0+ → 0+). The ft-value is the product of the integral over the electron energy
spectrum f and the electron lifetime τ : ft = f · τ · ln 2. Its theoretical prediction can be written as

ft · (1 + δR) · (1 − δC) =
K

2G2
F |Vud|2(1 +∆V

R)
, (58)

where GF is the Fermi constant (see Table 1), δR and ∆V
R are the nucleus-dependent and nucleus-independent parts

of the radiative corrections, respectively, δC is the charge-symmetry breaking corrections, and K = 2π3 ln 2/m5
e.

The charge-symmetry breaking corrections, as well as part of the nucleus-dependent radiative corrections, depend on
the nuclear structure of the nucleus under consideration. Using the results for nine different superallowed nuclear β
decays, the average is |Vud| = 0.9740 ± 0.0001exp [17]. This result is however dominated by theoretical uncertainties,
namely σ(|Vud|)[∆V

R ] = 0.0004, σ(|Vud|)[δC ] = 0.0003 and σ(|Vud|)[δR] = 0.0001. Adding these in quadrature results in
σ(|Vud|) = 0.0005, whereas adding them linearly (as in the Rfit approach) results in σ(|Vud|) = 0.0008.

A possible enhancement, ∆|Vud| = +0.0005, is predicted by a quark-meson coupling model due to a change of
charge symmetry violation for quarks inside bound nucleons compared to unbound nucleons [18]. The theoretical error



The CKMfitter Group: CP violation and the CKM matrix 21

has been enlarged by the PDG [12] by adding linearly the amount of the possible correction to the quoted error
of σ(|Vud|) = 0.0005, resulting in |Vud| = 0.9740 ± 0.0010. Since this correction may be partially contained in the
charge-symmetry breaking corrections, and since the effect can be significantly smaller depending on the model used,
we do not enlarge the error and use in the fit: |Vud| = 0.9740 ± 0.0001exp ± 0.0008theo.

Nuclear structure effects do not play a role in neutron β decays. However, to extract |Vud|, one needs to measure
the neutron lifetime and the ratio of the axial-vector coupling constant to the vector coupling constant gA/gV

|Vud|2 =
K ln 2

G2
F (1 +∆V

R)(1 + 3(gA/gV )2)f(1 + δR)τn
. (59)

In contrast to nuclear β decays, these measurements are not yet dominated by theoretical uncertainties. The weighted
mean for the neutron lifetime measurements is τn = (885.7 ± 0.7) s [17], where the available results are statistically
consistent. Recently, the PERKEO-II experiment has measured gA/gV = −1.2739 ± 0.0019 [19]. Using the world
average for the neutron lifetime this translates into |Vud| = 0.9717 ± 0.0013gA/gV ,τn

± 0.0004theo. The experimental
error on this result is a factor of two smaller than any preceding measurement with high neutron polarization [12].
When considering all data on gA/gV with high neutron polarization, the measurements are not consistent. A rescaling
by a factor of 1.6 is therefore applied following the PDG recipe, which results in gA/gV = −1.2690 ± 0.0022, with
|Vud| = 0.9745 ± 0.0016stat ± 0.0004theo [17]. Since the PERKEO-II result was obtained using a very high neutron
polarization and since O(2%) corrections used to extract the final result from data are much smaller than in previous
experiments, we only use this result in the fit.

The pion β decay π+ → π0e+νe is an attractive candidate to extract |Vud| from the branching ratio B(π+ → π0e+νe)
and the pion lifetime, since it is mediated by a pure vector transition and does not suffer from nuclear structure effects.
However, due to the small branching ratio, B(π+ → π0e+νe) = (1.025 ± 0.034) × 10−8 [12], the statistical precision is
not competitive with the other methods: |Vud| = 0.967±0.016B ±0.0005theo. The preliminary result from the PIBETA
experiment [20], B(π+ → π0e+νe) = (1.044± 0.007stat ± 0.009sys)× 10−8, yields |Vud| = 0.9765± 0.0055B ± 0.0005theo,
which still has a statistical error that is a factor of four times larger than the result from neutron decay experiments.
It will not be competitive even when the final expected experimental uncertainty of σ(|Vud|) = 0.002 is reached.

We build a combined likelihood for the |Vud| determinations from superallowed β decays, from neutron β decays
and from the pion β decay, taking into account the correlation due to the uncertainty on ∆V

R . We obtain the CL > 5%
interval 0.9730 < |Vud| < 0.9750.

2.2 |Vus|
The analyses of kaon and hyperon semileptonic decays provide the best determination of |Vus|. However, due to
theoretical uncertainties from the breakdown of SU(3) flavor symmetry, the hyperon decay data are less reliable [21,22].
Although, as pointed out in [23], linear SU(3) breaking corrections can be avoided, we do not use results from hyperon
decays since the uncertainties on the vector form factor f1 in these decays have not been fully evaluated yet. As a
consequence, we only use the value obtained from the vector transitions K+ → π0�+ν� and K0

L → π−�+ν�. The rates
for these decays depend on two form factors, f+(t) and f0(t), where t = (pK − pπ)2 is the four-momentum transfer-
squared between the kaon and the pion. Owing to the small electron mass, only f+(t) plays a role in Ke3 decays whose
functional dependence can be extracted from data. The form factor value at zero recoil, f+(0), is calculated within the
framework of chiral perturbation theory and is found to be fK0π−

+ (0) = 0.961 ± 0.008 [24]. The error estimate for this
value has been questioned in [25]. We note that a relativistic constituent quark model, successful in the description of
electroweak properties of light mesons, gives the consistent result fK0π−

+ (0) = 0.963 ± 0.004 [26].
A precise calculation of fK0π−

+ (0) is a difficult task. Order p6 contributions in chiral perturbation theory have
been calculated only recently [27,28]. The O(p6) calculation contains a “local” and a “loop” contribution leading to a
strong cancellation, with the result depending on the renormalization scale. [29] quotes fK0π−

+ (0)|p6 = −0.001 ± 0.010
leading to fK0π−

+ (0) = 0.981 ± 0.010 while emphasizing, however, that further work is needed to clarify whether the
uncertainty quoted is realistic. A value of fK0π−

+ (0) = 0.981 ± 0.010 would increase the deviation from unitarity in
the first family. It is worthwhile to mention in this context that a recent quenched Lattice-QCD calculation obtains
fK0π−
+ (0) = 0.960 ± 0.005stat ± 0.007sys [30] in agreement with the Leutwyler-Roos value [24].

Channel-independent and channel-dependent radiative corrections [31–33] as well as charge-symmetry (K+/K0
L)

and charge-independence (π−/π0) breaking corrections [24] are applied to compare the branching fraction results
from both channels [12]: fK0π−

+ (0)|Vus| = 0.2134 ± 0.0015exp ± 0.0001rad (K+ → π0e+νe) and fK0π−
+ (0)|Vus| =

0.2101± 0.0013exp ± 0.0001rad (K0
L → π−e+νe). Their weighted average is fK0π−

+ (0)|Vus| = 0.2114± 0.0016, where the
error has been rescaled by a factor of 1.6 to account for the inconsistency between neutral and charged kaon decay
data.
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Using fK0π−
+ (0)|Vus| = 0.2114 ± 0.0016 and the Leutwyler-Roos value fK0π−

+ (0) = 0.961 ± 0.008 [24], one obtains
|Vus| = 0.2200 ± 0.0017exp ± 0.0018theo. Recently, the BNL-E865 collaboration measured B(K+

e3) = (5.13 ± 0.02stat ±
0.09sys ± 0.04norm)% [34], which exhibits a 2.2σ deviation from the world average B(K+

e3) = (4.87 ± 0.06)% [12]. The
BNL-E865 result translates into |Vus| = 0.2285 ± 0.0023exp ± 0.0019theo [33] when using fK0π−

+ (0) = 0.961 ± 0.008.
If this result is confirmed this would imply that the previous B(K0

L,e3) results [12] are incorrect, since it is not likely
that such a discrepancy can be explained by isospin breaking effects [33]. The KLOE collaboration had presented
preliminary results on K0

e3 and K0
Lµ3 decays [35] in agreement with the PDG values for K+

e3 decays15. We use a
weighted average of the BNL-E865 result and the former |Vus| average, rescale the experimental uncertainty and
obtain |Vus| = 0.2228 ± 0.0039exp ± 0.0018theo by using the Leutwyler-Roos value fK0π−

+ (0) = 0.961 ± 0.008 [24]. As
mentioned previously there is intense theoretical activity concerning an improved determination of this form factor
value.

There are good prospects to clarify the experimental situation in the near future. The KLOE, KTeV and NA48
experiments have the potential to determine Kl3 decays with different experimental techniques. Another promising
method to measure |Vus| from moments of the strange spectral functions in τ decays has been proposed in [38] and
might be realized at the B factories where more than 108 τ pairs have currently been recorded.

2.3 |Vcd| and |Vcs|
Both the |Vcd| and |Vcs| matrix elements can be determined from di-muon production in deep inelastic scattering
(DIS) of neutrinos and anti-neutrinos on nucleons. In an analysis performed by the CDHS collaboration [39], |Vcd| and
|Vcs| are extracted by combining the data from three experiments, CDHS [39], CCFR [40] and CHARM II [41], giving
|Vcd|2×Bc = (4.63±0.34)×10−3, where Bc = 0.0919±0.0094 [42–44] is the weighted average of semileptonic branching
ratios of charmed hadrons produced in neutrino-nucleon DIS. This results in |Vcd| = 0.224 ± 0.014 [45]. The average
DIS result from CDHS, CCFR and CHARM II is κ|Vcs|2Bc = (4.53±0.37)×10−2, where κ = 0.453±0.106+0.028

−0.096 is the
relative contribution from strange quarks in the sea with respect to u and d quarks, leading to |Vcs| = 1.04± 0.16 [12].

Similarly to |Vus| coming from Ke3 decays, |Vcs| can be extracted from De3 decays. However the theoretical
uncertainty in the form factor calculation f+(0) = 0.7 ± 0.1 [46] limits its precision to |Vcs| = 1.04 ± 0.16 [45] (in
coincidental agreement with |Vcs| from DIS).

Assuming unitarity and using as additional input the constraints on |Vud|, |Vus|, |Vub|, |Vcd| and |Vcb|, |Vcs| can
also be extracted from the following quantities:

– RW
c = Γ (W+ → cq̄)/Γ (W+ → hadrons) =

∑
i=d,s,b |Vci|2/(

∑
i=d,s,b; j=u,c |Vji|2). For the three-generation CKM

matrix RW
c is expected to be 1/2. The measurements [47–49] are found to be consistent with this expectation.

– Γ (W → XcX) = RW
c · B(W → hadrons) · Γtot ∝∑i=d,s,b |Vci|2 [49].

– Γ (W+ → hadrons)/Γ (W+ → leptons) =
∑

i=d,s,b; j=u,c |Vji|2 × (1 + αS(mW )/π + . . . ) [12], for which the experi-
mental result is

∑
i=d,s,b; j=u,c |Vji|2 = (2.039 ± 0.025) · (B(W → �ν�) ± 0.001(αS)) [50].

For the three generation CKM matrix all these quantities have theoretical predictions that are independent of the
actual values of the CKM elements involved, so that they cannot be used in a CKM fit. On the other hand, these
measurements test the unitarity of a three-generation CKM matrix requiring, for example,

∑
i=d,s,b; j=u,c |Vji|2 = 2.

There are prospects that |Vcs|, |Vcd| and |Vcs|/|Vcd| will be determined at the CLEO-c experiment with unprece-
dented precision in semileptonic D-meson decays to a pseudoscalar meson D → P�+ν [51]. For a 3 fb−1 data sample,
the relative errors on Γ (D0 → K−�+ν) and Γ (D0 → π−�+ν) are expected to be σ(Γ )/Γ = 1.2% and σ(Γ )/Γ = 1.5%,
respectively. The extraction of |Vcs| and |Vcd| from these decays will require a substantial improvement of the theo-
retical precision in the form factor calculation, which may be achieved in the forthcoming years by Lattice QCD. A
relative uncertainty on the form factor of 3%, for example, would then translate into the errors σ(|Vcs|)/|Vcs| = 1.6%
and σ(|Vcd|)/|Vcd| = 1.7%. The ratio |Vcs|/|Vcd| will be determined at CLEO-c following two different approaches that
are expected to be less dependent on theoretical uncertainties. In the first approach, one compares semileptonic decays
with the same initial state but with different final states as Γ (D0 → K−�+ν) and Γ (D0 → π−�+ν). The ratio of
branching fractions depends on the product of |Vcs/Vcd|2 and a form factor ratio that differs from unity only due to
SU(3) breaking corrections. In the second approach, one compares reactions with different initial states but the same
final state, for instance D+

s → K0
S�

+ν and D+ → K0
S�

+ν.
15 In the meantime, the KLOE K0

S ,e3 result has been updated with nearly final systematic error [36]. The result for |Vus| is now
in reasonable agreement with the BNL-E865 result for K+

e3 and hence differs from the former determinations using K0
e3 decays.

The understanding of final state radiation of photons plays a crucial role in these analyses and may become a key issue when
comparing the results of the various experiments. Very recently, the KTeV collaboration has presented a result for semileptonic
KL branching fractions which gives fK0π−

+ (0)|Vus| = 0.2165 ± 0.0012 [37] in agreement with the BNL-E865 result. However,
this result has not yet been included in our average.
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2.4 |Vcb|
In the Wolfenstein parameterization, |Vcb| determines the parameter A which plays an important role for the constraints
on ρ, η from |Vub|, |εK | and ∆md. Its precision also has a significant impact on the SM prediction for the rare decays
K → πνν. It is most accurately obtained from exclusive B → D(∗)�ν� and inclusive semileptonic b decays to charm.

Exclusive decays

In the exclusive technique, the differential spectrum dΓ/dw for the decay B → D(∗)�ν� is measured, where w is the
scalar product of the velocity four-vectors of the B and the D(∗) mesons. This allows one to extract the product
FD∗(1)|Vcb|, where FD∗(w = 1) is the B-to-D(∗) form factor at zero-recoil. In the heavy quark limit, the form factor
is given by the Isgur-Wise function [52], which is equal to 1 at w = 1, but which receives corrections due to the finite
b and c quark masses that can be calculated in the framework of Heavy Quark Effective Theory (HQET) [52,53].
At present, the most precise determination using the exclusive technique comes from the decay B → D∗�ν�. Due to
the presence of a soft pion in the D∗ decay, its reconstruction is less affected by combinatorial background than for
a D-meson decay. Moreover, the phase space function for B → D�ν� drops more rapidly when approaching w = 1,
leading to a larger statistical error. Finally, the calculation of the form factor at zero-recoil is believed to have smaller
theoretical uncertainties in the case of a B-to-D∗ transition, since linear 1/mQ corrections in the heavy quark mass mQ

vanish, a property known as Luke’s theorem [54]. It has been pointed out that the form factor for B-to-D transitions
may be calculable with good theoretical precision despite the presence of 1/mQ corrections [55].

Previous theoretical determinations of FD∗(1) were based either on QCD sum rules (see, e.g., [56]) or on HQET,
where long-distance contributions had been estimated with the use of non-relativistic quark models [57,58]. Both
methods obtained values for FD∗(1) around 0.9 with quoted uncertainties of the order of 4%, which are however
difficult to control. Recently, important progress has been achieved through the calculation of FD∗(1) using Lattice
QCD in conjunction with HQET [59,60]. Their result, FD∗(1) = 0.913+0.030

−0.035 [61], is used in our fit. It is expected that
the uncertainty can be reduced in the forthcoming years. Averaging eight different measurements, the Heavy Flavor
Averaging Group (HFAG) obtains FD∗(1)|Vcb| = (36.7 ± 0.8) × 10−3 [62] and ρ2 = 1.44 ± 0.14, where ρ is the slope of
the form factor as a function of w. The linear correlation coefficient between the two parameters is 0.91. The goodness
of the average (χ2 = 30 for 14 degrees-of-freedom, that is CL = 0.08) indicates an inconsistency among the various
measurements, which is mainly driven by the somewhat large result obtained by CLEO.

It has been argued that the uncertainties in the Lattice QCD calculation of FD∗(1) [61] can be considered as
mainly statistical ones [9]. Following this reasoning and using FD∗(1)|Vcb| = (36.7 ± 0.8) × 10−3 [62], we obtain
|Vcb| = (40.2+2.1

−1.8) × 10−3, which is used in the fit.

Inclusive decays

In the inclusive approach, the semileptonic width Γ (B → X�ν�) is determined experimentally from the semileptonic
branching fraction B(B → X�ν�) = (10.90 ± 0.23)% [62] and the B-meson lifetime, where the admixture of neutral
(τB0 = (1.534 ± 0.013) ps−1 [62]) and charged (τB+ = (1.653 ± 0.014) ps−1 [62]) B mesons is understood. Relying on
the concept of quark-hadron duality, the theoretical prediction for the semileptonic width is obtained by means of a
Operator Product Expansion called Heavy Quark Expansion (HQE [63]), which invokes perturbative corrections and
non-perturbative hadronic matrix elements that dominate the theoretical uncertainty. The theoretical expression for
the semileptonic rate reads

Γ (b → c) =
G2

F|Vcb|2m5
b

192π3 f

(
m2

c

m2
b

)[
1 +A

(αS

π

)
+B

(
α2

S

π2 β0

)
+ C

(
Λ2

QCD

m2
b

)
+ O
(
α2

S,
Λ3

QCD

m3
b

,
αS

m2
b

)]
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where mb is the b-quark mass, f corrects for the finite charm quark mass mc, and the coefficients A, B and C are
functions of hadronic matrix elements and depend on mb and mc. Perturbative QCD corrections are known up to
order α2

Sβ0. Non-perturbative corrections are suppressed by powers of ΛQCD/mb. At order (ΛQCD/mb)2, the hadronic
matrix elements can be expressed by the HQET parameters λ1 and λ2, the expectation values of the heavy-quark
kinetic energy and the chromomagnetic interaction, respectively. Additional parameters occur at order (ΛQCD/mb)3.
Alternatively, in the kinetic mass scheme [64], these matrix elements are given by the parameters −µ2

π = λ1 and
µ2

G/3 = λ2, up to higher-order corrections. The parameter λ2 can be obtained from the observed hyperfine splitting
in the B-meson spectrum. The semileptonic width can be written in terms of the B-meson mass mB instead of mb by
introducing the non-perturbative parameter Λ, that is the energy of the light-degrees-of-freedom.

Besides the total semileptonic width, HQE can be used to predict sufficiently inclusive differential distributions.
Since different regions of the phase space have different sensitivity to the quark masses and the non-perturbative
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parameters, spectral moments calculated from measured differential distributions can be used to constrain these
parameters. However moments at too high order cannot be reliably predicted since quark-hadron duality starts to break
down. In recent years, the parameters Λ and λ1 have been constrained experimentally by measurements of leptonic
energy and hadronic mass moments. In addition, the measured photon energy distribution in B → Xsγ allows one to
extract Λ [65]. So far, the constraints on these parameters from CLEO, DELPHI and BABAR provide consistent results,
which may be interpreted as a test of the validity of the HQE up to order O(1/m3

Q). However no global fit taking into
account all various measurements has been performed yet16. An overview of several |Vcb| determinations using input
from measured moments can be found, e.g., in [67] from which we obtain |Vcb| = (42.0 ± 0.6stat ± 0.8theo) × 10−3.
Here, the first error arises from the experimental uncertainties on the branching fraction, the B-meson lifetime and
the fit error from the determination of Λ and λ1, and the second error contains the theoretical uncertainty due to
higher-order (O(1/m3

Q)) and αS corrections17.

Average

In the fit, we combine the likelihoods of |Vcb| from inclusive and exclusive measurements where we assume that they
are uncorrelated.

2.5 |Vub|
The third column element |Vub|, with additional input from |Vus| and |Vcb|, describes a circle in the (ρ, η) plane. It
can be extracted either from inclusive B → Xu�

−ν� decays, or from exclusive decays such as B → π�ν�, B → ρ�ν�,
B → ω�ν� and B → η�ν�.

Exclusive decays

In contrast to heavy-to-heavy transitions like B → D(∗), there is no heavy quark symmetry argument that allows
one to constrain the form factor normalization in the heavy-to-light decays B → π, ρ, ... . As a consequence, exclusive
determinations – besides being experimentally challenging – suffer from large theoretical uncertainties in the form
factor calculations. From a theoretical point of view, one expects that B → π�ν� will ultimately be the most promising
mode for an extraction of |Vub| in exclusive decays, since only one form factor function is present in pseudoscalar-to-
pseudoscalar transitions (while for instance three different form factor functions have to be calculated for B → ρ�ν�

decays). On the other hand, the softer lepton spectrum in B → π�ν� with respect to B → ρ�ν�, where the lepton
momentum benefits from the polarization of the ρ, leads to an enhanced b → c background contamination in the
former decay.

The BABAR collaboration has published a measurement of the branching fraction B(B → ρ�ν�) = (3.29 ±
0.42stat ± 0.47sys ± 0.60theo) × 10−4 [71]. Using several form factor models they extract |Vub| = (3.64 ± 0.22stat ±
0.25sys

+0.39
−0.56theo)× 10−3. The CLEO collaboration has recently presented a combined analysis of the decays B → π�ν�,

B → ρ�ν�, B → ω�ν� and B → η�ν� [72]. Owing to a largely hermetic detector, CLEO also measured the
rates in three different bins of q2, the lepton-neutrino four-momentum-squared. CLEO finds the combined value
|Vub| = (3.17 ± 0.17stat

+0.16
−0.17sys

+0.53
−0.39theo) × 10−3 for B → π�ν� and B → ρ�ν�. Even the single CLEO number for

B → ρ�ν� is hard to compare with the BABAR result [71] since different form factor calculations have been used in
both experiments, and results from different q2 regions have been taken into account. A combination of the BABAR
and CLEO numbers is also difficult because the applied theoretical uncertainty range by itself varies. These problems
in mind, we have averaged both results by symmetrizing each of the results with respect to the quoted theoretical
uncertainties and assuming that they are fully correlated between both experiments. With this method, we obtain
|Vub| = (3.35 ± 0.20exp ± 0.50theo) × 10−3.

Inclusive decays

Starting from the inclusive semileptonic width Γ (B → Xu�
−ν�), |Vub| can be predicted within the HQE framework with

a theoretical uncertainty of approximately 5%. However, there is a large background from b → c transitions that is about
16 Such a global analysis is now available in [66], which has been published after completion of this document.
17 Very recently, the BABAR collaboration has been presented precisely measured electron energy and hadronic mass mo-
ments [68,69]. The value obtained |Vcb| = (41.4±0.4stat ±0.4HQE ±0.6theo)×10−3 from a fit [70] in the kinetic mass scheme [64]
to these moments currently provides the most precise single |Vcb| determination. This input however has not yet been taken
into account in our global fit.
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50 times larger than the b → u signal. To suppress this background, experimental cuts in the three-dimensional phase
space have to be applied which introduce additional theoretical uncertainties. In a first kind of analyses, B → Xu�

−ν�

decays are separated from b → c background by accepting leptons with center-of-mass momenta typically larger
than 2.2–2.3 GeV, a region which kinematically excludes B → Xc�

−ν� decays. However this requirement retains only
10–15% of the semileptonic branching fraction. In this endpoint-region, the spectrum is dominated by the so-called
shape function, a non-perturbative object that reflects the Fermi motion of the b quark inside the B meson. Without
knowledge of the shape function, the extrapolation of the measured partial branching fraction to the full semileptonic
branching fraction is highly model-dependent, a drawback from which the pioneering |Vub| determinations by the
ARGUS and CLEO collaborations suffered [73–75] (see also [76–79]). The problem can be circumvented to some extent
by measuring the shape function in inclusive B → Xsγ decays, so far only published by the CLEO collaboration [65].
Recent lepton endpoint measurements have been presented by CLEO, BABAR and Belle [80–82], where all analyses
are using the B → Xsγ measurement from CLEO [65]. There is a discussion in the literature concerning uncertainties
from subleading shape functions [83–86]). From this, one deduces that an additional theoretical uncertainty on |Vub| of
the order of a few percent may be present. One should also note that there could be sizable effects from the violation
of quark-hadron duality in this small region of the phase space, which introduces theoretical uncertainties that are
difficult to quantify [87].

The b → c background in inclusive decays can also be suppressed by cutting on the hadronic invariant mass mX .
Accepting only events with mX below the D meson mass retains about 70–80% of the B → Xu�

−ν� events. Due
to detector resolution effects, the cut has to be lowered, which again increases the theoretical uncertainties from the
shape function. The kinematic region sensitive to the shape function can be avoided by cutting in addition on q2,
which in turn increases the statistical uncertainty. A complication in the high-q2 region is the possible significant
contribution from annihilation diagrams which cannot be computed at present [88]. A possible way to quantify such
annihilation contributions would be to determine the branching fraction for charged and neutral B mesons separately.
Various analyses reconstructing mX have been published in the past [89–92], some of which apply additional cuts on
q2 [91,92].

A different approach has been followed by ALEPH [93] and OPAL [94] who extract |Vub| from measurements of
the full semileptonic branching fraction by suppressing the dominant b → c background by means of a neural network.

For an up-to-date review of |Vub| determinations see, e.g., [62]. Following the HFAG recipe, we have only averaged
the results from experiments running on the Υ (4S) and obtain |Vub| = (4.45 ± 0.09stat,sys ± 0.56theo) × 10−3. Similarly
as in [95], we enlarge the theoretical uncertainty due to possible additional uncertainties from subleading shape
function effects, annihilation contributions in the high-q2 region and quark-hadron duality violations, resulting in
|Vub| = (4.45 ± 0.09stat,sys ± 0.68theo) × 10−3.

Average

In the CKM fit, we use |Vub| from inclusive and exclusive determinations. Usually, one would combine them by
multiplying their corresponding likelihoods. However their agreement is marginal so that the two likelihoods only
overlap if the theoretical uncertainties are driven to their extreme. Given the fact that several theoretical issues are
not settled yet and since |Vub| is one of the key ingredients of the CKM fit, we adopt a more conservative treatment:
the inclusive and exclusive |Vub| central values are averaged and as theoretical error is assigned the larger one of both
determinations. This gives |Vub| = (3.90 ± 0.08exp ± 0.68theo) × 10−3.

2.6 |εK |
The neutral kaon system provides constraints on the Unitarity Triangle throughK0K0 mixing, indirect18 and direct CP
violation, and the rare decays K+ → π+νν and (yet unknown) K0

L → π0νν. Only indirect CP violation is used in the
standard CKM fit since the corresponding matrix element can be obtained by Lattice QCD with accountable systematic
uncertainties. The SM prediction for neutral kaon mixing suffers from badly controlled long-distance contributions to
the mixing amplitudes (see, however, [96] where ∆mK is found to be short-distance dominated). Moreover, complicated
non-perturbative physics with large hadronic uncertainties prevents us from using the measurement of direct CP
violation. Rare decays are much cleaner and will give precise constraints as soon as they are measured with a reasonable
accuracy. We refer to Part IV for a dedicated study of direct CP violation and rare kaon decays.

The most precise measurement of the CP -violation parameter εK comes from the ratios of amplitudes, η+− and
η00, of K0

L to K0
S decaying to pairs of charged and neutral pions, respectively,

εK =
2
3
η+− +

1
3
η00 . (61)

18 The term “indirect” comprises CP violation in mixing and CP violation in the interference between decay with and without
mixing. In the kaon sector, these types of CP violation are given by ReεK and ImεK , respectively, which are of similar size.
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We use the average |εK | = (2.282 ± 0.017) × 10−3, obtained from the PDG values for η+− and η00 [12] assuming
no phase difference between these amplitude ratios, and taking into account the correlation induced by the measure-
ments of ε′/ε [97]. 19 The phase of εK is not considered here as it does not depend on the CKM matrix elements.
Other observables related to |εK |, like the charge asymmetries δL in semileptonic K0

L decays, |η+−γ |, or decay-plane
asymmetries in K0

L → π+π−e+e− decays are not considered in this average, since their precision is not competitive.
Within the SM, CP violation is induced by ∆S = 2 transitions, mediated by box diagrams. They can be related

to the CKM matrix elements by means of the local hadronic matrix element

〈K0|(s̄γµ(1 − γ5)d)2|K0〉 =
8
3
m2

Kf
2
KBK . (62)

The neutral kaon decay constant, fK = (159.8±1.5) MeV [12], is extracted from the leptonic decay rate Γ (K+ → µ+νµ),
assuming negligible isospin violation. The most reliable prediction of the “bag” parameter BK , which parameterizes
the deviation with respect to the vacuum insertion approximation BK = 1, is obtained from Lattice QCD. At present,
calculations are performed assuming SU(3) symmetry and within the quenched approximation, i.e., neglecting sea-
quark contributions in closed loops, which leads to a substantial reduction in computing time. The world average is
BK = 0.86 ± 0.06 ± 0.14 [99], where the first error combines statistical and accountable systematic uncertainties and
the second is an estimate of the bias from the quenched approximation and SU(3) breaking. Note that analytical
approaches based on the large-Nc expansion of QCD find a significantly smaller value for BK in the chiral limit [100].
Large chiral corrections could play an important rôle. At present, BK is the first source of theoretical uncertainty in
the SM prediction of εK , while the coupling |Vts| ∼ |Vcb| is the second one.

Neglecting the real part of the non-diagonal element of the neutral kaon mixing matrix M12, one obtains [101]20

|εK | =
G2

Fm
2
WmKf

2
K

12
√

2π2∆mK

BK

(
ηccS(xc, xc)Im

[
(VcsV

∗
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2]+ ηttS(xt, xt)Im
[
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∗
td)

2]
+ 2ηctS(xc, xt)Im

[
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∗
cdVtsV

∗
td

])
, (63)

where ∆mK = (3.490 ± 0.006) × 10−12 MeV [12], and where S(xi, xj) are the Inami-Lim functions [102]

S(x) ≡ S(xi, xj)i=j = x
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1
4
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4
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]
, (64)

with xi = m2
i /m

2
W (i = c, t). We use the MS masses21 mt(mt) = (167.5±4.0±0.6) GeV and mc(mc) = (1.2±0.2) GeV,

where a conservative error is assigned to the running charm quark mass. The parameters ηij in (63) are next-to-
leading order QCD corrections to the Inami-Lim functions. We use the values ηct = 0.47 ± 0.04 and ηtt = 0.5765 ±
0.0065 [107,108], while for ηcc, the parameter with the largest uncertainty, we use the parameterization [107]

ηcc � (1.46 ± δcc)
[
1 − 1.2

(
mc(mc)
1.25 GeV

− 1
)]

[1 + 52 (αS(mZ) − 0.118)] , (66)

19 Very recently, the KTeV collaboration has presented a new precise result on |η+−| = (2.228 ± 0.010) × 10−3 [98] to be
compared to the value of |η+−| = (2.286 ± 0.017) [12] translating in a 2.9 σ difference. This new value has not been taken into
account yet as an input to our fit.
20 Note the non-trivial CKM dependence in (63), which only reduces to a hyperbola at lowest orders in λ, and for values of ρ
and η close to the origin.
21 We derive the value of mt(mt) from the newest measurement of the pole mass mt = (178.0±2.7±3.3) GeV by the CDF and
D0 collaborations [103], where the first error given is statistical and the second systematic. We apply the pole-to-MS matching
at three loops [104–106] with five light quark flavors, where we neglect the mass of the light quark flavors with respect to the
t-quark mass. This leads to the perturbative series

mt(mt)
mt

= 1 − 4
3

(αS

π

)
− 9.12530

(αS

π

)2
− 80.4045

(αS

π

)3
, (65)

where αS ≡ α
(6)
S (mt) = 0.1068± 0.0018 (see Table 1) is the MS strong coupling constant for six active quark flavors at the scale

of the pole mass. With this we find mt(mt) = (167.5 ± 4.0 ± 0.6) GeV, where the first error is experimental and the second is
due to the truncation of the perturbative series and the uncertainty on αS.
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with an uncertainty from higher-order corrections parameterized by the δcc term

δcc = 0.22
[
1 − 1.8

(
mc(mc)
1.25 GeV

− 1
)]

[1 + 80 (αS(mZ) − 0.118)] . (67)

In this way, (66) agrees with the complete NLO calculation within a few percent. With mc(mc) given above and
αS(mZ) = 0.118 ± 0.003, and treating the errors as theoretical systematics, we find for ηcc the range 1.0 – 2.6 at
95% CL.

2.7 ∆md

The B0B0 oscillation frequency is determined by the mass difference ∆md between the two B0 mass eigenstates, BH

and BL. It is defined as a positive number and has been measured by many experiments to an average accuracy of
almost 1% (see Table 1). In analogy to |εK |, B0B0 oscillation in the SM is driven by effective flavor-changing neutral
current (FCNC) processes through ∆B = 2 box diagrams. However, in contrast to |εK | where the large hierarchy in the
Inami-Lim functions is partly compensated by the CKM matrix elements, the ∆B = 2 box diagrams are dominated
by top quark exchange between the virtual W± boson lines. This simplifies the theoretical prediction of ∆md which
is given by22

∆md =
G2

F

6π2 ηBmBd
f2

Bd
Bdm

2
WS(xt) |VtdV

∗
tb|2 , (68)

where ηB = 0.551 ± 0.007 (for a review, see [101]) is a perturbative QCD correction to the Inami-Lim function S(xt)
from perturbative QCD. The matrix element fBd

√
Bd is taken from Lattice QCD. Much progress has been achieved

in this domain recently, where partially unquenched calculations are now available. Nevertheless, there is an ongoing
discussion in the Lattice community whether the extrapolation for the light d quark mass to the chiral-limit is well-
understood (see the discussion of ∆ms below for further details). Here, we use the value and errors derived in [109]
(cf. Table 1).

For leptonic B decays and the semileptonic CP asymmetry ASL discussed in Part VII, the decay constant fBd
and

the bag parameter Bd are needed separately. The values and uncertainties used (cf. Table 1) are also taken from [109].

2.8 ∆ms

In the SM, the mass difference ∆ms between the heavy and the light B0
s mesons has only a weak relative dependence

on the Wolfenstein parameters (ρ, η). Nevertheless, a measurement of ∆ms is useful in the CKM fit since it indirectly
leads to an improvement of the constraint from the ∆md measurement on |VtdV

∗
tb|2. The SM prediction

∆ms =
G2

F

6π2 ηBmBs
f2

Bs
Bsm

2
WS(xt) |VtsV

∗
tb|2 , (69)

can be rewritten as

∆ms =
G2

F

6π2 ηBmBs
ξ2f2

Bd
Bdm

2
WS(xt) |VtsV

∗
tb|2 , (70)

where the parameter ξ = fBs

√
Bs/fBd

√
Bd quantifies SU(3)-breaking corrections to the matrix elements, which can

be calculated more accurately in Lattice QCD than the matrix elements themselves. Hence a measurement of ∆ms

improves the knowledge of fBd

√
Bd. In our previous analysis [6] we used the value ξ = 1.16 ± 0.05. Recently, the

uncertainty on ξ from Lattice QCD has been revisited: Lattice calculations using Wilson fermions have to work with
light quark masses of O(100 MeV), so that calculations for B0 mesons need to be extrapolated to the “chiral limit”
(this is not necessary for the B0

s due to the heavy strange quark). This process is controversial because of the potential
presence of a curvature in the chiral extrapolation curve (see e.g. [110–115]). The recent development using “staggered”
fermions allows one to perform Lattice QCD calculations with significantly smaller light quark masses. So far, these
studies do not show a significant enhancement of ξ [116] but one should keep in mind that the interpretation of results
obtained with the use of staggered fermions is still under discussions (cf. e.g. [109]). Based on a phenomenological

22 The CKM factor |VtdV
∗

tb|2 occurring in (68) approximately describes a circle around (1, 0) in the (ρ, η) plane, to which a
distortion appears at order O(λ10):

|VtdV
∗

tb|2 = λ6A2 [(1 − ρ)2 + η2]+ λ10A4(2ρ− 1)
[
(1 − ρ)2 + η2]+ O(λ12) .
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analysis, it has been shown in [115] that in the chiral limit, the double-ratio (fBs
/fBd

)/(fK/fπ) does not differ much
from unity resulting in ξ = 1.21±0.04±0.05, where the second error is due to the chiral extrapolation23. Interestingly,
based on a quark model, the Lattice value of ξ ≈ 1.16 was considered too low [117], even before the discussion about
the chiral extrapolation had started.

Limits on ∆ms from the search for B0
sB

0
s oscillation have been obtained by several experiments [118–122]. A

convenient approach to average various results on ∆ms is the Amplitude Method [123] (see also the exhaustive study
in [124]), which consists of introducing an ad hoc amplitude coefficient, A, placed in front of the cosine modulation term
(see Appendix A.5.2 for further details). The advantage of this indirect probe for oscillation stems from the fact that
the dependence on A is linear and hence the measurement of A is Gaussian, so that merging different experimental
measurements is straightforward. One can then define the experimental sensitivity for given ∆ms by 1.645×σA(∆ms)
(found to be 18.7 ps−1 [62]), and a 95% CL lower limit for ∆ms, given by the sum of the sensitivity and the central
value of the measured amplitude. It is found to be 14.4 ps−1 [62].

The question on how to deduce the confidence level from the available experimental information is crucial to the
CKM analysis and has been scrutinized on many occasions [123–125,8,6,9]. Traditionally, B0

sB
0
s oscillation results have

been implemented into fits using χ2
|1−A| = ((1 − A)/σA)2 with CL(χ2

|1−A|) = Erfc(|1 − A|/σA/
√

2)) [123]. However
this procedure does not properly interpret the information of the amplitude spectrum. For instance, two measured
amplitudes A1 and A2, where A1 > 1 and A2 < 1 but A1 − 1 = 1 − A2, result in the same confidence level in this
approach although it would be natural to assign a larger likelihood for an oscillation to A1 than to A2. In [6], an
alternative procedure, which exploits the information from the sign of 1 − A by omitting the modulus in the above

definition of χ2
|1−A|, has been proposed: χ2

1−A = 2 ·
[
Erfc−1

(
1
2 Erfc

(
1−A√
2σA

))]2
. As pointed out in [9], this procedure

is an approximation and can lead to a bias in presence of a true measurement. The information from the fit to the
proper time distributions of mixed and unmixed B0

sB
0
s decays is obtained from the ratio of the likelihood at given

frequency ∆ms, L(∆ms), to the likelihood at infinity, L(∆ms = ∞) [123,125,8], for which the logarithm reads

2∆ lnL∞(∆ms) =
(1 − A)2

σ2
A

− A2

σ2
A
. (71)

In Appendix A we propose a frequentist method to deduce a confidence level from this information. This method is
the one used in our CKM fit.

2.9 |Vts|

Besides ∆ms, the inclusive branching fraction of the radiative decay B → Xsγ determines the product |VtsV
∗
tb|. Using

the measurements from CLEO, ALEPH, BABAR and Belle, [126] quotes |VtsV
∗
tb| = 0.047 ± 0.008. Since the precision

of this constraint is not competitive it is not used in our fit.
The ratio |Vtd/Vts| can be determined from the ratio of the exclusive rates for the decays B → ργ to B → K∗γ,

which eliminates the form factor dependencies up to SU(3) breaking. Based on the recent 3.5σ evidence for the decay
B → ργ found by Belle [127], a phenomenological study has been performed in [128]. The constraint on |Vtd/Vts|
derived from the measurement is found to be in agreement with the expectation, but is not (yet) accurate enough to
represent a competitive input in the global CKM fit.

2.10 sin 2β

In b → cc̄s quark-level decays, the time-dependent CP -violation parameter S measured from the interference between
decays with and without mixing is equal to sin 2β to a very good approximation. The world average uses measurements
from the decays B0 → J/ψK0

S , J/ψK0
L, ψ(2S)K0

S , χc1K
0
S , ηcK

0
S and J/ψK∗0 (K∗0 → K0

Sπ
0) and gives sin 2β[cc̄] =

0.739 ± 0.048 [62]. It is dominated by the measurements from BABAR [129] and Belle [130]. In b → cc̄d quark-level
decays, such as B0 → J/ψπ0 or B0 → D(∗)D(∗), unknown contributions from (not CKM-suppressed) penguin-type
diagrams carrying a different weak phase than the tree-level diagram compromises the clean extraction of sin 2β. As
a consequence, they are not taken into account in the sin 2β average.

Within the SM, decays mediated by the loop transitions b → sq̄q (q = u, d, s), such as B0 → φK0 or B0 →
K+K−K0

S , but also the recently measured B0 → f0K
0
S , as well as B0 → η′K0

S and B0 → π0K0
S , can be used to

extract sin 2β in a relatively clean way (see [131–135] and [136–140,62] for the experimental results). Due to the
large virtual mass scales occurring in the penguin loops, additional diagrams with heavy particles in the loops and

23 Note that the latter error is strongly correlated with the one on fBd

√
Bd, because both have the same source. We neglect

this correlation, which may result in an underestimation of the impact of the bound on ∆ms.
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new CP -violating phases may contribute. Such a measurement of the weak phase from mixing-induced CP violation
and the comparison with the SM expectation is therefore a sensitive probe for physics beyond the SM. Assuming
penguin dominance and neglecting CKM-suppressed amplitudes, these decays carry approximately the same weak
phase as the decay B0 → J/ψK0

S . As a consequence, their mixing-induced CP -violation parameters are expected
to be −ηf × sin 2β to a reasonable accuracy in the SM, where ηf is the CP eigenvalue of the final state. Recent
measurements from BABAR and Belle give conflicting results for the mixing-induced CP parameter of φK0: with the
Belle result, SφK0

S
= −0.96 ± 0.50+0.09

−0.11 [137], indicating a 3.3σ deviation from the SM, while BABAR finds (using both
φK0

S and φK0
L) −ηφKSφK = 0.47±0.34+0.08

−0.06 [136], which is in agreement with sin 2β[cc̄]. Moreover, the world averages
−SK+K−K0

S
= 0.54±0.18+0.17

−0 and Sη′K0
S

= 0.27±0.21 [62] (BABAR and Belle agree for these) do not show a significant
departure from the charmonium reference, though both tend to support the observation sin 2βeff, sqq̄ < sin 2β[cc̄].
Finally, the recent BABAR measurement −Sf0K0

S
= 1.62+0.51

−0.56 ± 0.10 [139] is in decent agreement with sin 2β[cc̄].
A more detailed numerical discussion of the various sin 2β results is given in Sect. III.3.4. At present, we do not

include the results from penguin-dominated decays in the sin 2β average.

2.11 sin 2α

The measurement of the time-dependent CP -violating asymmetries in the charmless decay B0 → ρ+ρ− allows us to
derive a significant constraint on the angle sin 2α using the Gronau–London isospin analysis [141] (extended here to
include electroweak penguins), which invokes B → ρρ decays of all charges. While the full isospin analysis requires
the measurement of (at least one of) the time-dependent CP parameters24 in the color-suppressed decay B0 → ρ0ρ0,
the available upper limit on its branching fraction can be used to constrain |α − αeff |. Albeit analytical bounds have
been derived for this case [142–144], the numerical analysis performed in CKMfitter leads to equivalent results (see
the detailed discussions of the isospin analysis in Sect. VI.1.2.1 and VI.5).

For the isospin-related decays we use the branching fractions B(B0 → ρ+ρ−) = (30±4±5)×10−6 [145] (see also the
first observation and polarization measurement of this mode in [146]), B(B+ → ρ+ρ0) = (26.4+6.1

−6.4)×10−6 [62,147,148],
and the upper limit at 90% CL B(B0 → ρ0ρ0) < 2.1 × 10−6 [147] (in the CKM fit we use the result B(B0 → ρ0ρ0) =
(0.6+0.8

−0.6 ± 0.1) × 10−6, which leads to this limit). The ρ mesons in the decays B0 → ρ+ρ− and B+ → ρ+ρ0 are
found to be longitudinally polarized with the longitudinal fractions (fL ≡ ΓL/Γ ): f+−

L = 0.99 ± 0.03+0.04
−0.03 [145] and

f+0
L = 0.962+0.049

−0.065 [147,148], respectively. As a consequence, the B → ρρ system is actually like the B → ππ system.
Assuming (conservatively) the relative polarization of the ρ0 mesons in B0 → ρ0ρ0 to be fully longitudinal, and using
the CP asymmetries S+−

ρρ,L = −0.19 ± 0.33 ± 0.11 and C+−
ρρ,L = −0.23 ± 0.24 ± 0.14 measured by BABAR [145,149]

for the longitudinal fraction of the B0 → ρ+ρ− event sample, together with the branching fraction and polarization
measurements for the other charges, we obtain constraints on sin 2α as described in Sect. VI.5.

Note that the present analysis neglects non-resonant contributions and possible other π+π− resonances under the
ρ0, as well as effects from the radial excitations ρ(1450) and ρ(1700) that were found to be significant contributors to
the pion form factor in e+e− annihilation [150] and τ decays [151]. Also neglected are isospin-violating contributions
due to the finite width of the ρ [152], as well as electromagnetic and strong sources of isospin violation (see the
discussion in Sect. VI.5).

3 Results of the global fit

The standard CKM fit includes those observables for which the Standard Model predictions (and hence the CKM
constraints) can be considered to be quantitatively under control. We only take into account measurements that lead
to significant and competitive constraints on the CKM parameters. The standard observables are:

|Vus| , |Vud| , |Vub| , |Vcb| , |εK | , ∆md , ∆ms , sin 2β[cc̄] , sin 2α[ρρ] . (72)

The theoretical uncertainties related to these observables are discussed in Sect. III.2.
Among the observables that are not (yet) considered are the following.

– Measurements of the remaining CKM elements as well as the constraints from the rare kaon decay K+ → π+νν
and from B → ργ are not (yet) precise enough to improve the knowledge of the CKM matrix (cf. Sect. III.2.9).

– The theoretical prediction of direct CPV in kaon decays (ε′/ε) is not yet settled (cf. Sect. III.2).

24 Note that in contrast to B0 → π0π0 both, C00
ρρ,L and S00

ρρ,L, are experimentally accessible in B0 → ρ0ρ0. Their measurement
overconstrains the isospin analysis and can be used to remove some of the ambiguities on α (see Sect. VI.5).
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Table 1. Inputs to the standard CKM fit. If not stated otherwise: for two errors given, the first is statistical and accountable
systematic and the second stands for systematic theoretical uncertainties. The fourth and fifth columns indicate the treatment
of the input parameters within Rfit: measurements or parameters that have statistical errors (we include here experimental
systematics) are marked in the “GS” column by an asterisk; measurements or parameters that have systematic theoretical
errors, treated as ranges in Rfit, are marked in the “TH” column by an asterisk. Upper part : experimental determinations of
the CKM matrix elements. Middle upper part : CP -violation and mixing observables. Middle lower part : parameters used in SM
predictions that are obtained from experiment. Lower part : parameters of the SM predictions obtained from theory

Errors
Parameter Value ± Error(s) Reference GS TH

|Vud| (neutrons) 0.9717 ± 0.0013 ± 0.0004 (see text) � �

|Vud| (nuclei) 0.9740 ± 0.0001 ± 0.0008 (see text) � �

|Vud| (pions) 0.9765 ± 0.0055 ± 0.0005 [20] � �

|Vus| 0.2228 ± 0.0039 ± 0.0018 see text � �

|Vub| (average) (3.90 ± 0.08 ± 0.68) × 10−3 see text, [62] � �

|Vcb| (incl.) (42.0 ± 0.6 ± 0.8) × 10−3 see text � �

|Vcb| (excl.) 40.2+2.1
−1.8 × 10−3 [62,61] � -

|εK | (2.282 ± 0.017) × 10−3 [97] � -
∆md (0.502 ± 0.006) ps−1 [62] � -
∆ms Amplitude spectrum [62] � -
sin 2β[cc̄] 0.739 ± 0.048 [62] � -
S+−

ρρ,L −0.19 ± 0.35 see text � -
C+−

ρρ,L −0.23 ± 0.28 see text � -
Bρρ,L all charges see text see text � -

mc(mc) (1.2 ± 0.2) GeV [12] - �

mt(mt) (167.5 ± 4.0 ± 0.6) GeV [12] � -
mK+ (493.677 ± 0.016) MeV [12] - -
∆mK (3.490 ± 0.006) × 10−12 MeV [12] - -
mBd (5.2794 ± 0.0005) GeV [12] - -
mBs (5.3696 ± 0.0024) GeV [12] - -
mW (80.423 ± 0.039) GeV [12] - -
GF 1.16639 × 10−5 GeV−2 [12] - -
fK (159.8 ± 1.5) MeV [12] - -

BK 0.86 ± 0.06 ± 0.14 [99] � �

αS(m2
Z) 0.1172 ± 0.0020 [12] - �

ηct 0.47 ± 0.04 [107] - �

ηtt 0.5765 ± 0.0065 [107,108] - -
ηB(MS) 0.551 ± 0.007 [101] - �

fBd

√
Bd (228 ± 30 ± 10) MeV [109] � �

fBd (200 ± 28 ± 9) MeV [109] � �

Bd 1.3 ± 0.12 [109] � �

ξ 1.21 ± 0.04 ± 0.05 [109] � �

B → ρρ amplitude params. all floating see text - �
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– Charmless B decays other than B → ρρ also lead to various interesting constraints on the angles of the Unitarity
Triangle and provide sensitivity to contributions from physics beyond the SM. Detailed discussions are given in
Part VI. In principle, amplitude analyses using SU(2) symmetry are theoretically safe (the isospin-breaking contri-
butions can be controlled) so that they will be used in the standard CKM fit once they lead to significant results.
SU(3)-based analyses are in general more constraining, with however the limitation that theoretical uncertainties
are more difficult to control.

– Various constraints on the angle γ can be obtained from the comparison of CKM-favored and CKM-suppressed
b → c decays (cf. Part V). The accumulated statistic are, however, not yet sufficient to perform fully data-driven
analyses and to eliminate theoretical input with uncertain errors.
We use the observables (72) to perform constrained fits to the CKM parameters and related quantities. We place

ourselves in the framework of the Rfit scheme (cf. Part II) and hence define the theoretical likelihoods of (30) to be
one within the allowed ranges and zero outside. In other words, we use κ = 0 and ζ = 1 for the Hat function Lsyst(x0)
defined in (56). As a consequence, no hierarchy is introduced for any permitted set of theoretical parameters, i.e., the χ2

that is minimized in the fit receives no contribution from theoretical systematics. However the theoretical parameters
cannot trespass their allowed ranges. When relevant, statistical and theoretical uncertainties are combined beforehand,
following the procedure outlined in Sect. II.6.1. Floating theoretical parameters are labelled by an asterisk in the “TH”
column of Table 1. For parameters with insignificant theoretical uncertainties, the errors are propagated through the
theoretical predictions, and added in quadrature to the experimental error of the corresponding measurements25.

3.1 Probing the Standard Model

We have demonstrated in Part II that the metrological phase is intrinsically unable to detect a failure of the SM to
describe the data. We therefore begin the CKM analysis with an interpretation of the test statistics χ2

min;ymod
, which

is a probe of the goodness-of-fit test for the SM hypothesis. We perform the toy Monte Carlo simulation described in
Sect. II.3. The standard CKM fit returns after convergence

χ2
min;ymod

= 0.6 , (73)

for the full data set (including sin 2β[cc̄] and sin 2α[ρρ], where the latter has little impact only). We generate the
probability density distribution F(χ2) of χ2

min;ymod
by fluctuating the measurements and yQCD parameters according

to their non-theoretical errors around the theoretical values obtained with the use of the parameter set yopt
mod for which

χ2
min;ymod

is obtained. The resulting toy distribution is shown by the histogram in Fig. 5. Integrating the distribution
according to (51) leads to the significance level (SL) represented by the smooth curve in Fig. 5. We find a p-value of

P(χ2
min;ymod

|SM) ≤ SL(χ2
min;ymod

) = 71% , (74)

for the validity of the SM. One notices that compared to previous fits [6], the “unitarity problem” in the first row,
that is the incompatibility between |Vud| and 1 − |Vus|2, becomes insignificant with the likelihoods we use for these
two quantities (see the discussion in Sect. 2.1 and subsequent paragraphs). Their average has χ2

min;|Vud|,|Vus| = 0.16.
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25 This procedure neglects the correlations occurring when such parameters are used in more than one theoretical prediction.
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The large p-value of the electroweak sector of the SM when confronted with all CKM-related data strongly supports
the KM mechanism [2] as the dominant source of CP violation at the electroweak scale. It is the necessary condition
that permits us to move to the CKM metrology.

3.2 Metrology of the CKM phase

It has become customary to present the constraints on the CP -violating phase in the (ρ, η) (unitarity) plane of the
Wolfenstein parameterization. In the case of such a two-dimensional graphical display, the a parameter space (see
Sect. II.2.1) is defined by the coordinates a = {x, y} (e.g., a = {ρ, η}) and the µ space by the other CKM parameters
λ and A, as well as the yQCD parameters. The results of the standard CKM fit are shown in the enlarged (ρ, η) plane
in Fig. 6, not including (upper plot) and including (lower plot) in the fit the world average of sin 2β and sin 2α[ρρ] (see
Table 1). The outer contour of the combined fit corresponds to the 5% CL, and the inner contour gives the region
where CL ∼ 1 and hence theoretical systematics dominate (an adjustment of the µ parameters can maintain maximal
agreement i.e., the χ2

min;ymod
value is reproduced therein). Also shown are the ≥ 5% CL regions of the individual

constraints. For sin 2β both the ≥ 32% and ≥ 5% CL regions are drawn. A zoom into the region favored by the
combined fit is given in Fig. 7.

3.3 Numerical constraints on CKM parameters and related observables

Using the standard CKM fit inputs (72), we derive one-dimensional numerical constraints for the Wolfenstein param-
eters, the CKM matrix elements, branching ratios of rare K and B meson decays26 as well as a selection of theoretical
parameters. In the case of such one-dimensional displays, the a parameter is defined by the x coordinate, and the
µ space by all the other parameters. The Wolfenstein λ has a larger error compared to the fit presented in [6] since
we enlarged the uncertainty on |Vus| as discussed in Sect. 2. Numerical and graphical results are obtained for CKM
fits including sin 2β[cc̄] and sin 2α[ρρ]. The results are quoted in Tables 2 and 3 and some representative variables are
plotted in Fig. 8 for fits with and without sin 2β[cc̄] and sin 2α[ρρ]. The statistical precision of the present result for
sin 2α[ρρ] is not yet sufficient to give a significant improvement of the standard CKM fit (see the outlook into the
future given in Sect. VI.5).

The predictions of the rare W -annihilation decays B+ → �+ν can be compared to the present (yet unpublished)
upper limits B(B+ → τ+ν) < 4.1 × 10−4 [153] and B(B+ → µ+ν) < 6.8 × 10−6 [154]. While the µ+ν limit is still an
order of magnitude larger than the expected value, the experiments approach the sensitivity required for a discovery
of B+ → τ+ν. It may become one of the key analyses in the coming years.

3.4 Is there a sin 2β problem in penguin-dominated decays?

As pointed out in Sect. III.2, penguin-dominated decays like φK0, η′K0
S and CP -even-dominated K+K−K0

S as well as
π0K0

S (b → sq̄q transitions) show on average lower experimental sin 2β values than b → cc̄s transitions. An exception
to this is the recent BABAR measurement using the decay f0K0

S .
The interpretation of the non-charmonium decays in terms of sin 2β has to be done with care, since contribu-

tions from CKM-suppressed penguins and trees may lead to deviations from the leading weak decay phase of up
to | sin 2βsq̄q − sin 2βcc̄s| ∼ 0.2 within the SM [135,133,134]. When averaging all penguin as well as charmonia mea-
surements we obtain a p-value of 1.7% (2.4σ). If CKM-suppressed penguins and trees can be neglected in b → sq̄q
transitions this might be a hint of an anomaly. When taking into account the modifications of the CL due to the
presence of the non-physical boundaries (cf. Sect. II.1.1) the overall p-value decreases to 1.1% (2.6σ).

The individual measurements27 compared to the constraint from the standard CKM fit, not including sin 2β, are
shown in Fig. 9. The average of the SφK measurement from BABAR and Belle has a p-value of 4.9%, so that more data
are needed to conclude. If we remove Belle’s SφK0

S
from the all-mode average, we obtain for the compatibility with the

charmonium results a p-value of 29%, which is 1.1σ. Hence without confirmation of Belle’s SφK0
S

measurement there
is no statistical justification to claim evidence for New Physics on the basis of the present data. We stress that a clear
26 In the SM the branching ratio for the helicity-suppressed decay B+ → �+ν is given by

B(B+ → �+ν) =
G2

FmBdm
2
�

8π

(
1 − m2

�

m2
Bd

)
f2

Bd
|Vub|2τB+ .

27 Note that the C coefficients, which vanish if the penguin dominance and the SM assumptions are correct, are left free to vary
in the time-dependent fits performed by the experiments. All of them are found to be in reasonable agreement with zero [62].
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Table 2. Fit results and errors (deviations from central values at confidence levels that correspond to one-, two- and three
standard deviations, respectively) using the standard input observables (72) (i.e., including the world average on sin 2β[cc̄]). For
results marked by “meas. not in fit”, the measurement of the corresponding observable has not been included in the fit. The
input parameters used for this fit are quoted in Table 1

Central value ± error at given CL
Quantity CL = 0.32 CL = 0.05 CL = 0.003

λ 0.2265+0.0025
−0.0023

+0.0040
−0.0041

+0.0045
−0.0046

A 0.801+0.029
−0.020

+0.066
−0.041

+0.084
−0.054

ρ 0.189+0.088
−0.070

+0.182
−0.114

+0.221
−0.156

η 0.358+0.046
−0.042

+0.086
−0.085

+0.118
−0.118

J [10−5] 3.10+0.43
−0.37

+0.82
−0.74

+1.08
−0.96

sin 2α −0.14+0.37
−0.41

+0.57
−0.71

+0.74
−0.82

sin 2α (meas. not in fit) −0.29+0.56
−0.46

+0.77
−0.65

+0.93
−0.70

sin 2β 0.739+0.048
−0.048

+0.096
−0.095

+0.124
−0.137

sin 2β (meas. not in fit) 0.817+0.037
−0.222

+0.053
−0.279

+0.067
−0.334

α (deg) 94+12
−10

+24
−16

+32
−22

α (deg) (meas. not in fit) 98+15
−16

+26
−22

+31
−28

β (deg) 23.8+2.1
−2.0

+4.5
−3.8

+6.0
−5.3

β (deg) (meas. not in fit) 27.4+1.9
−9.2

+2.8
−11.1

+3.7
−13.0

γ � δ (deg) 62+10
−12

+17
−24

+23
−30

sin θ12 0.2266+0.0025
−0.0023

+0.0040
−0.0041

+0.0045
−0.0046

sin θ13 [10−3] 3.87+0.35
−0.30

+0.35
−0.60

+0.35
−0.76

sin θ23 [10−3] 41.13+1.37
−0.58

+2.43
−1.16

+3.08
−1.73

Ru 0.405+0.035
−0.032

+0.077
−0.062

+0.093
−0.083

Rt 0.889+0.073
−0.095

+0.118
−0.196

+0.161
−0.243

∆md (ps−1) (meas. not in fit) 0.54+0.26
−0.21

+0.62
−0.31

+0.94
−0.34

∆ms (ps−1) 17.8+6.7
−1.6

+15.2
−2.7

+22.1
−3.7

∆ms (ps−1) (meas. not in fit) 16.5+10.5
−3.4

+17.7
−5.7

+23.9
−7.2

εK [10−3] (meas. not in fit) 2.5+1.6
−1.1

+2.4
−1.4

+3.1
−1.6

fBd

√
Bd (MeV) (theor. value not in fit) 215+28

−21
+79
−31

+79
−39

BK (theor. value not in fit) 0.86+0.26
−0.30

+0.57
−0.39

+0.90
−0.45

mt(mt) (GeV/c2) (meas. not in fit) 165+48
−47

+124
−64

+194
−77
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Table 3. Fit results and errors (deviations from central values at confidence levels that correspond to one-, two- and three
standard deviations, respectively) using the standard input observables (72) (i.e., including the world average on sin 2β[cc̄]). The
variables in the last four lines are defined by λi ≡ VidV

∗
is. For results marked by “meas. not in fit”, the measurement related to

the corresponding observable has not been included in the fit. The input parameters used for this fit are quoted in Table 1

Central value ± error at given CL
Quantity CL = 0.32 CL = 0.05 CL = 0.003

B(K0
L → π0νν) [10−11] 2.89+0.84

−0.69
+1.71
−1.24

+2.41
−1.52

B(K+ → π+νν) [10−11] 6.7+2.8
−2.7

+3.7
−3.2

+4.6
−3.6

B(B+ → τ+νµ) [10−5] 11.9+4.5
−5.7

+10.4
−8.2

+17.9
−10.1

B(B+ → µ+νµ) [10−7] 4.7+2.3
−1.7

+4.6
−2.7

+7.6
−3.5

|Vud| 0.97400+0.00054
−0.00058

+0.00094
−0.00095

+0.00106
−0.00106

|Vus| 0.2265+0.0025
−0.0023

+0.0040
−0.0041

+0.0045
−0.0046

|Vub| [10−3] 3.87+0.35
−0.30

+0.73
−0.60

+0.73
−0.76

|Vub| [10−3] (meas. not in fit) 3.87+0.34
−0.31

+0.81
−0.61

+1.27
−0.88

|Vcd| 0.2264+0.0025
−0.0023

+0.0040
−0.0041

+0.0045
−0.0046

|Vcs| 0.97317+0.00053
−0.00059

+0.00094
−0.00097

+0.00106
−0.00112

|Vcb| [10−3] 41.13+1.36
−0.58

+2.43
−1.16

+3.08
−1.73

|Vcb| [10−3] (meas. not in fit) 41.2+5.1
−5.7

+7.9
−5.8

+9.9
−5.8

|Vtd| [10−3] 8.26+0.72
−0.86

+1.23
−1.79

+1.64
−2.25

|Vts| [10−3] 40.47+1.39
−0.62

+2.42
−1.21

+3.17
−1.78

|Vtb| 0.999146+0.000024
−0.000058

+0.000047
−0.000104

+0.000070
−0.000133

|VudV
∗

ub| [10−3] 3.77+0.34
−0.30

+0.71
−0.59

+0.71
−0.75

arg [VudV
∗

ub] (deg) 62+10
−12

+16
−24

+22
−31

|VcdV
∗

cb| [10−3] 9.31+0.31
−0.15

+0.62
−0.34

+0.80
−0.49

arg [VcdV
∗

cb] (deg) −179.9653+0.0047
−0.0042

+0.0091
−0.0084

+0.0122
−0.0107

|VtdV
∗

tb| [10−3] 8.24+0.73
−0.85

+1.24
−1.78

+1.64
−2.24

arg [VtdV
∗

tb] (deg) −23.8+2.0
−2.1

+3.8
−4.5

+5.3
−6.0

|Vtd/Vts| 0.204+0.018
−0.022

+0.029
−0.046

+0.039
−0.058

Reλc −0.2204+0.0022
−0.0023

+0.0038
−0.0037

+0.0043
−0.0041

Imλc [10−4] −1.41+0.18
−0.18

+0.34
−0.36

+0.44
−0.48

Reλt [10−4] −3.04+0.32
−0.31

+0.67
−0.60

+0.86
−0.80

Imλt [10−4] 1.41+0.19
−0.17

+0.37
−0.34

+0.48
−0.44

sign of New Physics in these penguin decays would be a pattern of sin 2βeff, sqq̄ values that are significantly different
from sin 2β[cc̄] and significantly different from each other28. It might be that Belle’s SφK0

S
measurement represents a

statistical fluctuation and that very large New Physics effects are not to be expected, which of course does not imply

28 Unless some specific symmetry or dynamical mechanism relates the New Physics to SM amplitude ratios in different chan-
nels [155].
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Fig. 9. Confidence levels for the various sin 2β[eff] measurements that are believed to be dominated by a single CKM phase,
their averages and the result from the standard CKM fit

that more precise data will not be able to give evidence for non-standard contributions if they exist. We revisit the
φK0 mode in a more general New Physics framework in Sect. VII.3.

3.5 Resolving the two-fold ambiguity in 2β

In spite of the agreement with the standard CKM fit of one out of the four solutions for β from the precise sin 2β
measurement using charmonium decays, it is still possible that, because of contributions from New Physics, the correct
value of β is one of the three other solutions. The measurement of the sign of cos 2β would reduce the solution space
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to an indistinguishable two-fold ambiguity29. The BABAR collaboration has performed a measurement of cos 2β in a
time-dependent transversity analysis of the pseudoscalar to vector-vector decay B0 → J/ψK∗0(→ K0

Sπ
0), where cos 2β

enters as a factor in the interference between CP -even and CP -odd amplitudes [138]. In principle, this analysis comes
along with an ambiguity on the sign of cos 2β due to an incomplete determination of the strong phases occurring in
the three transversity amplitudes. BABAR resolves this ambiguity by inserting the known variation [157] of the rapidly
moving P -wave phase relative to the slowly moving S-wave phase with the invariant mass of the Kπ system in the
vicinity of the K∗0(892) resonance.

When fixing the sin 2β value to the world average, BABAR finds

cos 2β = 2.72+0.50
−0.79 ± 0.27 , (75)

where the effect introduced by the variation of sin 2β within its small errors is negligible. BABAR quotes the probability
that the true cos 2β is positive30 to be 89%, where the value is obtained with the use of Monte Carlo methods. This
is much less than the 3.8σ exclusion of the mirror solutions π/2 − β and 3π/2 − β, obtained from a probabilistic
treatment of the result (75), using the analytical method described in Sect. II.2.2.3, and assuming that the log-
likelihood function belonging to (75) has parabolic tails. Since the Monte Carlo evaluation is reliable, we conclude
that a Gaussian interpretation of the errors given in (75) is flawed. Due to the lack of a more accurate experimental
CL function for cos 2β (precisely the one obtained from Monte Carlo simulation), we do not include the present
measurement in the standard CKM fit, although we will assume cos 2β > 0 in part of our New Physics analysis (see
Part VII). Proposals for alternative determinations of sign(cos 2β) can be found in [158–163].

4 Conclusions

The robustness of the Unitarity Triangle fit has been greatly improved since the precision measurement of sin 2β became
available. It outperforms by far all other contributions in the combined experimental and theoretical precision. A new
constraint on sin 2α from the isospin analysis of B → ρρ decays has become available, the theoretical uncertainties of
which – though not yet entirely evaluated or known – seem to be under control. Its inclusion into the standard CKM fit
already leads to a modest improvement on the knowledge of α and γ. We derive a large number of quantitative results
on the CKM parameters for various parameterizations and related quantities, theoretical parameters and physical
observables from the standard CKM fit (see Tables 2 and 3).

The goodness-of-fit of the global CKM fit is found to be 71%. We find that penguin-dominated measurements of
(to good approximation) sin 2β are in agreement with the reference value from B0 decays into charmonium states. It
might turn out that the large negative S value found by Belle in B0 → φK0

S represents a statistical fluctuation. A
measurement of cos 2β in B0 → J/ψK∗0(→ π0K0

S) decays indicates that the β solution from the sin 2β measurement
that is favored by the standard CKM fit corresponds to the one that occurs in B0B0 mixing.

Part IV
Constraints from kaon physics

This part presents the CKM constraints from direct CP violation and other CP -related observables in kaon decays
that do not belong to the standard CKM fit. We refer to Sects. III.2.2 and III.2.6 for a discussion of the constraints
from Ke3 decays, giving |Vus|, and from indirect CP violation, respectively.

Section IV.1 discusses current experimental and theoretical status of constraints related to the CP -violating param-
eter ε′/ε. Conventions and input values from [164] are used. Sections IV.2 and IV.3 discuss the status of measurements
of the rare kaon decays K+ → π+νν and K0

L → π0νν, together with a study of future perspectives. For a recent
detailed review of these rare kaon decays we refer to [165].

1 Direct CP violation in the neutral kaon system: ε′/ε

A non-zero value for the CP -violation parameter ε′, defined as

η+− = ε+ ε′ , η00 = ε− 2ε′ , (76)

29 The invariance β → π + β remains. It cannot be lifted without theoretical input on a strong phase [156].
30 This solution corresponds to reasonably small strong phases between transversity amplitudes, as expected in the factorization
approximation [158].
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Table 4. Experimental results for Re(ε′/ε)

Experiment Value [10−4] Status

NA31 [166] 23.0 ± 6.5 final
E731 [167] 7.4 ± 5.9 final
NA48 [168] 14.7 ± 2.2 final
KTeV [169] 20.7 ± 2.8 1/2 data sample

Average 16.7 ± 1.6 CL = 10%

where ε ≡ εK , establishes direct CP violation in the neutral kaon system. The corresponding experimental observable is
Re(ε′/ε). The first evidence of direct CP violation in neutral kaons decays was found by the NA31 collaboration [166].
Statistically significant observations were obtained by the next-generation of experiments, NA48 [168] and KTeV [169].
Table 4 summarizes the available measurements that yield an average of Re(ε′/ε) = (16.7± 1.6)× 10−4, with χ2 = 6.3
for 3 degrees of freedom, that is a p-value of 10%.

The SM prediction of Re(ε′/ε) has large uncertainties because it relies on the precise knowledge of penguin-like
hadronic matrix elements. Detailed calculations at NLO [170,171] show that two hadronic parameters B(1/2)

6 (gluonic
penguins) and B

(3/2)
8 (electroweak penguins) dominate, where the superscripts denote the dominant ∆I = 1/2 and

∆I = 3/2 contributions, respectively, and refer to the isospin change in the K → ππ transition. It is convenient to
express the SM prediction as a function of the hadronic parameters with the use of the approximate formula [164]

Re(ε′/ε) = Im(VtdV
∗
ts) [18.7R6 (1 −ΩIB) − 6.9R8 − 1.8]

Λ
(4)
MS

340 MeV
, (77)

where ΩIB = 0.06 ± 0.08 corrects for isospin-breaking [172], Λ(4)
MS

= (340 ± 30) MeV is the characteristic QCD scale for
4 active quark flavors in the MS scheme, and where R6 and R8 are defined by

R6 = B
(1/2)
6

[
121 MeV
ms(mc)

]2
, R8 = B

(3/2)
8

[
121 MeV
ms(mc)

]2
, (78)

with the running s-quark mass ms(mc) = (115±20) MeV. In the strict large-Nc limit, the hadronic parameters satisfy
B6 = B8 = 1. The quoted values and errors for ΩIB, Λ(4)

MS
, and ms(mc) are taken from [164]. In the Wolfenstein

parameterization one has Im(VtdV
∗
ts) = A2λ5η + O(λ7). Even though the experimental value of Re(ε′/ε) is known to

10% accuracy, reliable constraints on η cannot be obtained (not even on its sign) due to the present uncertainties
assigned to the hadronic parameters R6 and R8. Various dynamical effects come into play, and while it is possible to
estimate some of them thanks to appropriate theoretical methods, it is very difficult to take into account all possible
contributions within a single approach.

Some consensus has been achieved on the value and error of R8 obtained by lattice QCD. The most precise lattice
calculation [173] has an accuracy of ∼ 10%. Taking into account other lattice results [174,175], the conservative
average R8 = 1.00 ± 0.20 is quoted in [164], and the value R6 = 1.23 ± 0.16 is derived from the correlation between
the experimental result for ε′/ε and R8. The computation of R6 on the lattice is more difficult due to the mixing with
lower dimensional operators. An attempt can be found in [175]; however this study does not take into account flavor-
symmetry breaking effects that come from quenching artefacts, as stressed in [176]. As for R8, the authors of [177]
argue that again significant contributions that vanish in the quenched approximation could spoil the lattice estimate.
Several analyses using analytical non-perturbative techniques are also available. An approach based on dispersion
relations to evaluate final state interaction finds R6 = 1.05 ± 0.06 and R8 = 0.84 ± 0.05 [172]. A chiral perturbation
theory calculation gives R6 = 2.2 ± 0.4 and R8 = 1.1 ± 0.3 [178]. Another recent calculation, taking into account
O(nf/Nc) corrections to the large-Nc limit of QCD, finds R6 = 2.1 ± 1.1 and R8 = 2.20 ± 0.40 [177]. Noticeable
disagreement in both values and errors among the different approaches is observed.

It is therefore instructive to study the constraints put upon these parameters by the experimental data. Figure 10
shows the allowed region for R6 versus R8, obtained from the experimental average for Re(ε′/ε) together with the stan-
dard CKM fit result for Im(VtdV

∗
ts). The symbols with error bars indicate the theoretical calculations. One concludes

that the various theoretical predictions provide estimates for ε′/ε that are in agreement with the experimental data,
but the present size of the uncertainties and also the disagreement between the various predictions for R6 prevents us
from using ε′/ε as a constraint in the standard CKM fit. In the future, model-independent constraints on R6 could be
extracted from the measurement of CP -violation in kaon decays to three pions [179].
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As an exercise we follow the strategy of [164] and use the average lattice QCD value for R8, together with the
experimental average of Re(ε′/ε) and the standard CKM fit, to constrain R6. We find the 95% CL range

0.75 < R6 < 1.80 .

2 Rare decays of charged kaons: K+ → π+νν

The BNL-E787 experiment has observed two events of the rare decay K+ → π+νν, resulting in the branching
fraction B(K+ → π+νν) = (1.57+1.75

−0.82) × 10−10 [15], which due to the small expected background rate (0.15 ± 0.03
events) effectively excludes the null hypothesis. One additional event has been observed near the upper kinematic
limit by the successor experiment BNL-E949 [16]. They quote the combined branching fraction B(K+ → π+νν) =
(1.47+1.30

−0.89) × 10−10. The left hand plot in Fig. 11 gives the CLs for the experimental result (CL obtained from [16])
and the SM prediction (see paragraphs below), with input from the standard CKM fit.

In the SM, the branching fraction is given by [180]

B(K+ → π+νν) = rK+
3α2

2π2

B(K+ → π0e+ν)
|Vus|2sin4θW

∑
i=e,µ,τ

∣∣∣ηXX0(xt)VtdV
∗
ts +X

(i)
NLVcdV

∗
cs

∣∣∣2 . (79)

Here, rK+ = 0.901 corrects for isospin breaking [181], X0(xt) (with xt = m2
t/m

2
W ) is the Inami-Lim function

X0(x) =
x

8

(
x+ 2
x− 1

+
3x− 6

(x− 1)2
lnx
)
, (80)

corrected by a phenomenological QCD factor ηX = 0.994, which is due to the top quark contribution [102] to order αs,
and the functions X(�)

NL, � = e, µ, τ , contain the contributions from Z0 penguin and box diagrams with charm quarks
in the loops, and have been calculated at the next-to-leading log approximation [180].

To illustrate the CKM constraint, we express (79) in the Wolfenstein parameters

B(K+ → π+νν) = κ+A
4X2(xt)

1
σ

[
(ση)2 + (ρ0 − ρ)2

]
, (81)

with
X(x) = ηXX0(x) , σ = 1 + λ2 + O(λ4) , ρ0 = 1 +

P0

A2X(xt)
. (82)

Equation (79) provides an almost elliptic constraint in the (ρ, η) with the center close to the (ρ = 1, η = 0) apex of the
Unitarity Triangle. It allows us to extract the CKM matrix element |Vtd| from the branching fraction measurement.
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Fig. 11. Confidence level of B(K+ → π+νν) (left) and |Vtd| (right). The solid lines give to the constraints from the combined
E787 and E949 measurements, and the hatched areas represent the SM predictions obtained from the standard CKM fit
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Fig. 12. Constraint in the (ρ, η) plane from the combined E787 and E949 measurements of B(K+ → π+νν) (left), and
from a hypothetical B(K0

L → π0νν) measurement with 10% relative error (right). Dark, medium and light shaded areas have
CL > 0.90, 0.32 and 0.05, respectively

The constant κ+ is defined in [180]. It contains a λ8 dependence so that B(K+ → π+νν) is a function of
(
Aλ2
)4,

which is constrained by |Vcb| and experimentally determined from inclusive and exclusive b → c�ν transitions. Finally,
the parameter P0 quantifies the charm quark contribution and is given by

P0 =
1
λ4

[
2
3
Xe

NL +
1
3
Xτ

NL

]
. (83)

Theoretical uncertainties on P0 arise from the charm quark mass, the renormalization scale dependence and ΛQCD.
The left hand plot in Fig. 12 shows the constraints in the (ρ, η) plane obtained from the comparison of the

experimental result with the SM prediction. Within the large experimental errors, the constraint is found to be
compatible with the allowed region obtained from the standard CKM fit.

We concentrate in the following on the study of the constraint on |Vtd| to evaluate the potential of future B(K+ →
π+νν) measurements. Relative uncertainties on the branching fraction scale approximately as 4σ(|Vcb|)/|Vcb| and
2σ (X0) /X0, and the relative error on |Vtd|2 scales equivalently. Moreover, the charm quark contribution (83) induces
an uncertainty on the center of the elliptical constraint, which translates into an uncertainty on |Vtd|. The right hand
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Table 5. Constraints on |Vtd| from B(K+ → π+νν) for the three
scenarios described in the text. The last line gives the result from
the present standard CKM fit (Table 3)

Scenario ≥ 5% CL range on |Vtd| [×10−3] Half width

(I) 6.1–10.5 2.2
σ(mc) only 6.8–9.9 1.6
σ(mt) only 7.7–8.9 0.6
σ(|Vcb|) only 7.9–8.7 0.4

(II) 7.0–9.7 1.3

(III) 7.2–9.4 1.1

standard CKM fit 6.5–9.5 1.5

plot in Fig. 11 gives the present constraints on |Vtd| for the combined E787 and E949 measurements, and the standard
CKM fit, respectively. We extrapolate into the future by assuming that the branching fraction is equal to the central
value obtained in the present CKM fit. Other inputs used in this study are |Vus| (to fix the Wolfenstein parameter
λ), and |Vub| together with |Vcb| to intersect the elliptical constraint in a restricted area of the (ρ, η) plane, and to
hence reduce the effect of the uncertainty on the center of the ellipse. Table 5 gives a breakdown of the uncertainties
contributing to the error of |Vtd| for three scenarios:

(I) using the present knowledge of the relevant input parameters and neglecting the statistical error on the B(K+ →
π+νν) measurement;

(II) assuming a measurement with a statistical precision of 10% and an improvement of the relevant uncertainties to
a 1% error on |Vcb|, a 2 GeV error on the top quark mass, and a 50 MeV error on the charm quark mass;

(III) assuming a measurement with a statistical precision of 10%, and neglecting all theoretical uncertainties in the
prediction of B(K+ → π+νν).

We conclude from this exercise that, once an accurate branching fraction measurement becomes available, the quan-
titative knowledge of the input parameters to the SM prediction must be significantly improved so that it does not
dominate the uncertainty on the |Vtd| constraint31. For the input values used in the Scenario (I), the charm term is the
dominant source of uncertainty, mostly due to the charm quark mass and the renormalization scale dependence. Since
the top quark mass is expected to be measured with increasing accuracy at current and future hadron machines, and
the error used for the charm quark mass is rather conservative, an improved precision on |Vcb| will become mandatory
(see Sect. 2.4).

3 Rare decays of neutral kaons: K0
L

→ π0νν

In the SM, the golden decay K0
L → π0νν proceeds almost entirely through a direct CP -violating amplitude dominated

by the top quark contribution. The theoretical prediction of the branching fraction is given by [180]

B(K0
L → π0νν) = κL

(
Im[VtdV

∗
ts]

λ5

)2
X2(xt)

= κLA
4η2X2(xt) + O(λ4) , (84)

where κL = κ+(rKL
τKL

)/(rK+τK+) = (2.12 ± 0.03) × 10−10 [165], and where rKL
= 0.944 accounts for isospin

breaking [181]. The constant κ+ is defined in [180]. It contains a λ8 term so that the branching fraction is again
proportional to |Vcb|4. The constraint in the (ρ, η) plane obtained from a future measurement of B(K0

L → π0νν) (here

31 One could, of course, argue that instead of |Vtd| the parameter of interest is |VtdV
∗

ts|2. However we note that the SM prediction
for B(K+ → π+νν) and hence the extraction of |Vtd| is not dominated by the uncertainty on |Vcb|. Also, the interest in this
mode is twofold: firstly the improvement of the knowledge of the CKM phase, and secondly the search for physics beyond the
SM. In both cases |Vtd| appears to be the appropriate parameter.
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Table 6. Constraints on |η| from B(K0
L → π0νν), for the

three scenarios described in the text. The last line gives
the result from the present standard CKM fit (Table 3)

Scenario ≥ 5% CL range on |η| Half width

(I) 0.313–0.399 0.043
σ(mt) only 0.333–0.379 0.023
σ(|Vcb|) only 0.327–0.385 0.028

(II) 0.336–0.376 0.020

(III) 0.317–0.395 0.039

standard CKM fit 0.273–0.444 0.086

with 10% relative uncertainty) corresponds to two horizontal lines as illustrated on the right hand plot of Fig. 12. The
relative error on |η| scales with 2σ (|Vcb|) /|Vcb| and σ (X) /X.

We study the CL on |η| obtained from a B(K0
L → π0νν) measurement, for the same three scenarios introduced in

the previous section. We assume that the branching fraction is equal to the central value from the present CKM fit.
Table 6 gives a breakdown of the uncertainties contributing to the error of |η| for the three scenarios defined in the
previous section. The dominant source of uncertainty on |η| in Scenario (I) is introduced by |Vcb|. Since the sensitivity
to theoretical uncertainties is reduced, the constraint on |η| will remain statistically limited for realistic expectations
on near-future measurements of the K0

L → π0νν branching fraction (with ∼ 30–60 signal events).

4 Conclusions

Despite the success of the experimental effort that lead to a precise measurement of Re(ε′/ε), the present situation
does not allow us to use it as a reliable constraint in the CKM fit without a substantial improvement on the theoretical
side. As for the rare kaon decays, a handful of events are expected to be observed by BNL-E949 [16], while the CKM
project at FNAL [182], starting around 2005, expects to collect about 100 events within a few years of data taking.
Since these measurements have very small backgrounds, a ∼ 10% statistical error on the B(K+ → π+νν) is expected.
The prospects for a measurement of the decay K0

L → π0νν are more uncertain due to the enormous experimental
challenge. Long-term projects [183] are designed to collect high statistics, but even intermediate-statistics branching
fraction measurements [184] may reveal potentially large deviations from the SM, and are hence of considerable interest.

Part V
Constraints on 2β + γ and γ from tree decays

1 CP -violating asymmetries in B0 → D(∗)±π∓ decays

Even though they are not CP eigenstates, partially and fully reconstructed B0 → D(∗)±π∓ decays are sensitive to the
UT angle γ because of the interference between the CKM-favored amplitude of the decay B0 → D(∗)−π+ with the
doubly CKM-suppressed amplitude of B0 → D(∗)+π−.32 The relative weak phase between these two amplitudes is −γ
and, when combined with the B0B0 mixing phase, the total phase difference is −(2β + γ) to all orders in λ:

−(2β + γ) = arg
[
−VtdV

∗
tb

V ∗
tdVtb

V ∗
cdVub

VudV ∗
cb

]
. (85)

The interpretation of the CP -violation observables in terms of the UT angles requires external input on the ratio

r(∗) ≡
∣∣∣∣qp A(B0 → D(∗)−π+)
A(B0 → D(∗)−π+)

∣∣∣∣ , (86)

32 This is similar to the situation in B0 → ρ±π∓ decays (see Sect. VI.4), even if the two amplitudes there are of the same
CKM order, which considerably increases their potential CP asymmetries.
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which can be obtained experimentally from the corresponding flavor-tagged branching fractions, or from similar modes
that are easier to measure. These can be ratios of branching fractions of the charged B+ → D(∗)+π0 to the neutral
CKM-favored decay, or ratios involving self-tagging decays with strangeness like B0 → D

(∗)+
s π−. Corrections for SU(3)

breaking in the latter case generate a significant theoretical uncertainty, which is generally hard to quantify. Naively,
one can estimate r(∗) ∼ |V ∗

cdVub/VudV
∗
cb| � 0.02. At present, the most precise semi-experimental determination of r(∗)

can be obtained from the SU(3)-corrected ratio

r(∗) =
|Vus|
|Vud|

√
B(B0 → D

(∗)+
s π−)

B(B0 → D(∗)−π+)
fD(∗)

f
D

(∗)
s

. (87)

Inserting the corresponding branching fractions and decay constants leads to [185]

r∗ = 0.017+0.005
−0.007 , r = 0.014 ± 0.004 . (88)

In [185] a theoretical uncertainty of 30% of the central value is attributed in addition to the experimental errors to
each of the quantities. It accounts for SU(3)-breaking corrections and the neglect of W -exchange contributions to the
B0 → D(∗)+π− decay amplitude. However (87) already corrects for the main (factorizable) symmetry breaking; on
the other hand, the exchange diagram is the only possible contribution to the D±

s K
∓ mode: thus one has roughly

|exchange/emission|2 ∼ B(B0 → D−
s K

+)/B(B0 → D−π+) ∼ 1% [186]. As a consequence, taking into account the
residual non factorizable SU(3) breaking and the order of magnitude of the exchange contribution, we estimate the
total theoretical uncertainty to be of the order of 15% for both r and r∗, keeping in mind that a more refined estimate
of this error source will be needed when the statistics increase.

BABAR [185,187] and Belle [188] use two sets of observables

S(∗)± = 2r(∗) sin(2β + γ ± δ(∗)) , (89)

where S(∗)± is the coefficient of the sine term in the time evolution of the B0(B0) → D(∗)±π∓ system, and

a(∗) ≡ 1
2

(
S(∗)+ + S(∗)−

)
= 2r(∗) sin(2β + γ) cos(δ(∗)) , (90)

c(∗) ≡ 1
2

(
S(∗)+ − S(∗)−

)
= 2r(∗) cos(2β + γ) sin(δ(∗)) , (91)

so that S(∗)+ = a(∗)+c(∗) and S(∗)− = a(∗)−c(∗). These definitions are valid in the limit of small r(∗) only so that terms
of order r(∗)≥2 can be neglected and the cosine coefficient in the time evolution is one (C(∗) = (1 − r2)/(1 + r2) → 1).
The relative strong phase δ(∗) is unknown and has to be determined simultaneously with 2β+γ from the experimental
observables. Due to the disparate strength of the two interfering amplitudes, the CP asymmetry is expected to be
small, so that the possible occurrence of CP violation on the tag side becomes an important obstacle. Tag side CPV
is absent for semileptonic B decays (mostly lepton tags). The parameter a(∗) is independent of tag side CPV.

The experimental results are given in Table 7. The averages quoted are taken from the HFAG [62].
For each mode the combinations sin(2β + γ ± δf ) are extracted (δDπ = δ and δD∗π = δ∗). Simple trigonometry

shows that, as far as the CP angle is concerned, this is equivalent to the determination of the quantity | sin(2β + γ)|
up to a two-fold discrete ambiguity. Should the two strong phases δ and δ∗ be different, the discrete ambiguity could

Table 7. Experimental results from time-dependent CP-asymmetry analyses of partially and fully recon-
structed B0 → D∗±π∓ decays, respectively. The averages are taken from the HFAG [62]

BABAR [187,185] Belle [188]

partially reconstructed fully reconstructed fully reconstructed Average

a∗ −0.063 ± 0.024 ± 0.014 −0.068 ± 0.038 ± 0.020 0.063 ± 0.041 ± 0.016 ± 0.013 −0.038 ± 0.021

c∗ −0.004 ± 0.037 ± 0.020 0.031 ± 0.070 ± 0.033 0.030 ± 0.041 ± 0.016 ± 0.030 0.012 ± 0.030

a - −0.022 ± 0.038 ± 0.020 −0.058 ± 0.038 ± 0.013 −0.041 ± 0.029

c - 0.025 ± 0.068 ± 0.033 −0.036 ± 0.038 ± 0.013 ± 0.036 −0.015 ± 0.044
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Fig. 13. Constraint in the enlarged (ρ, η) plane from the aver-
age measurement of time-dependent CP -violating asymmetries in
B0 → D∗±π∓ decays. The shaded areas indicate CL > 5% (light),
CL > 32% (medium) and CL > 90% (dark) regions. Also shown
is the CL > 5% region of the standard CKM fit

in principle be resolved, leaving a single solution for | sin(2β + γ)| (and thus four solutions for the angle 2β + γ itself
in [0, π]).

Figure 13 shows the confidence level obtained in the (ρ, η) plane. Also shown is the allowed region from the standard
CKM fit. Good agreement is observed, although the statistical significance of the measurement is still weak. Note that
we have used a Gaussian Prob(χ2, 1) here to evaluate the CL. As seen below, this tends to overestimates the CL (and
hence to weaken the constraint). The left hand plot in Fig. 14 shows the confidence level for | sin(2β + γ)| obtained
from the various measurements. A single peak is observed, although δ and δ∗ are very close to each other (see below),
because limited statistics merges the position of the two solutions. We perform a toy Monte Carlo simulation in order
to evaluate the goodness of the Gaussian Prob(χ2, 1) approximation for the confidence level. Significant deviations
are observed. Also shown are the prediction from the standard CKM fit as well as the result obtained when using the
BABAR results only, which benefit from a small |c∗| fluctuation in the measurement with partially reconstructed B
decays. The right hand plot shows the constraint obtained on the UT angle γ when also using the world average of
sin 2β[cc̄]. For simplicity, we use the Prob(χ2, 1) approximation for this as well as for the upcoming plots. Also shown
is the constraint from the standard CKM fit. One can use the latter prediction of | sin(2β + γ)| together with the
B0 → D(∗)±π∓ measurements to constrain the strong phases δ(∗) as shown in Fig. 15.

In summary we conclude that in spite of the considerable experimental effort to achieve this first direct constraint
on 2β + γ, the present statistical accuracy is insufficient to improve the knowledge of the apex in the unitarity plane.
The errors of the present world averages given in Table 7 have to be reduced by a factor of about five (approximately
5 ab−1 accumulated luminosity) to be competitive with the standard CKM fit on | sin(2β + γ)| (assuming the above
15% uncertainty on r(∗)). Such large statistics samples, which are necessary due to the smallness of the CP -violating
asymmetries, are likely to increase the importance of the experimental systematic uncertainties. Similar modes like
B0 → D(∗)±ρ∓ must be included in future to improve the reach of this analysis.

2 Dalitz plot analysis of B+ → D(∗)0K+ decays

The golden method to measure the angle γ at the B factories has been proposed by Gronau, London and Wyler
(GLW) [189,190] (see also [191,192]) and extended by Atwood, Dunietz and Soni (ADS) [193]. The GLW method
consists of reconstructing the D0 (D0) occurring in charged B+ → D0K+ (B+ → D0K+) decays as a CP eigenstate
(e.g., K0

Sπ
0 or K0

Sπ
+π−) so that the CKM-favored (b → c) and CKM-suppressed (b → u) transition amplitudes

interfere. The relative phase between these amplitudes is γ + δ, where δ is a CP -conserving strong phase and γ the
weak UT angle. The measurement of the corresponding branching fractions and CP -violating asymmetries allows one
to simultaneously extract γ and the strong phase from a triangular isospin analysis, up to discrete ambiguities, even
if the strong phase vanishes, but with virtually no theoretical uncertainties. The feasibility of this or related analyses
crucially depends on the size of the color- and CKM-suppressed b → u transition (expected to be roughly rB ∼ 1/8,
if color-suppression holds). Recently, the BABAR collaboration has determined an upper limit for the amplitude ratio
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Fig. 14. Left : confidence level obtained for | sin(2β + γ)|. The shaded area gives the average from BABAR and Belle obtained
by means of a toy Monte Carlo simulation (see Sect. II.2.2.3). As a comparison, we show by the solid line the approximate result
from the Prob(χ2, 1) interpretation. Also shown is the result from BABAR only, which leads to a stronger exclusion of small
| sin(2β + γ)| values due to the somewhat propitiously small value of c∗ in partially reconstructed B0 → D∗±π∓ decays [187].
Also shown is the prediction from the standard CKM fit. Right : confidence level obtained for the UT angle γ when using BABAR
and Belle’s results on | sin(2β+γ)| (and | cos(2β+γ)|) combined with the world average of sin 2β[cc̄]. Also shown is the prediction
from the standard CKM fit
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rB = |A(B+ → D0K+)/A(B+ → D0K+)| of 0.22 at 90% CL [194], which dampens the hope for a performing γ
analysis using the GLW or ADS techniques at the first generation B factories.

Along the line of [195], the Belle collaboration overcomes these difficulties by performing a Dalitz plot analysis of
B+ → D0K+ (and B+ → D∗0(→ D0π0)K+) decays followed by a three-body D0 decay to K0

Sπ
+π− [196]33. The weak

phase γ and the strong phase δ as well as the magnitude of the suppressed-to-favored amplitude ratio rB are extracted
from a fit to the interference pattern between D0 and D0 in the Dalitz plot. A large number of intermediate resonances
has to be considered to properly model the full K0

Sπ
+π− Dalitz plot, where high-statistics samples of charm decays

can be used to fit the model parameters [198]. Belle determines a probability density function (PDF) for φ3 = γ by
means of a Bayesian analysis with uniform priors for γ, δ and rB . Single-sided integration of this PDF, and choosing
the solution that is consistent with the standard CKM fit, results in

γ = 81◦ ± 19◦ ± 13◦ ± 11◦ , (92)

where the first error is statistical, the second systematic and the third is due to the amplitude model. The constraint on
the second solution, which is not consistent with the standard CKM fit, is obtained by the transformation γ → γ + π

33 After the completion of this work, an update of the Belle analysis has been submitted [197]. By means of a frequentist
analysis, Belle finds the combined result γ = [77+17

−19(stat) ± 13(syst) ± 11(model)]◦, which slightly differs from the previous
value. This modification in the result does however not alter the conclusion drawn from the study of New Physics in the present
work.
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CL=0.05 (statistical only) Fig. 17. Confidence level in the enlarged (ρ, η) plane from the
Dalitz plot analysis of B+ → D(∗)0K+ decays [195,196]. The
shaded areas indicate CL > 5% (light), CL > 32% (medium)
and CL > 90% (dark) regions. The hatched area indicates the
CL > 5% region when ignoring systematic uncertainties. Also
shown is the CL > 5% constraint from the standard CKM fit

(the full analysis actually leads to the determination of tan γ). We have extracted and integrated the PDF from
[196] and find the confidence levels shown as a function of γ and (ρ, η) in Figs. 16 and 17. Since systematic and
model-dependent errors are not included in the PDF, we add them in quadrature to the statistical error. With these
rather strong assumptions, agreement with the standard CKM fit is observed. Belle determines the magnitude of the
suppressed-to-favored amplitude ratio to be rB = 0.28+0.09

−0.11, which is slightly larger than the expectation and than
the 90% CL bound set by BABAR, though the results are well compatible within errors (23%). Since large values of rB
lead to an increased sensitivity to γ, the error given in (92) may increase if the true rB is significantly smaller. More
data are needed to clarify this.

Since the result is still preliminary, we do not introduce it in the standard CKM fit. It is however used in our
analysis of New Physics presented in Part VII.
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Part VI
Charmless B decays

Unlike B0 → J/ψK0
S or other charmonium decays, for which amplitudes with weak phases that are different from

the dominant tree phase are doubly CKM-suppressed, multiple weak phases must be considered in the analyses of
charmless B decays. This complication makes the extraction of the CKM couplings from the experimental observables
considerably more difficult, and at the same time richer.

The first section of this part is devoted to the extraction of α from the analysis ofB → ππ decays, using four different
scenarios with increasing theoretical input. Section 2 presents fits of the calculation of hadronic matrix elements within
the QCD Factorization approach to the Kπ and ππ data. We give a detailed discussion of its predictive power and
limitations. Section 3 describes the constraints obtained from the phenomenological analysis of B → Kπ modes only.
We also study the impact from electroweak penguin amplitudes. The extraction of α from the pseudoscalar-vector
final states, ρπ and SU(2) or SU(3)-related modes, is presented in Sect. 4. Finally, we discuss the isospin analysis of
B → ρρ decays in Sect. 5, which is similar to the ππ system. In most cases we attempt to evaluate the constraints
obtained with higher luminosity samples.

Throughout this part, we will assume that CP violation in mixing is absent, i.e., |q/p| = 1, as suggested by the
Standard Model (|ΓBH

− ΓBL
| � ΓB0) and confirmed by experiment (ASL = −0.007 ± 0.013, see Sect. VII.2).

Remark on radiative corrections

We point out that the charmless analyses, published by the BABAR and Belle collaborations up to approximately
Summer 2003, utilized Monte Carlo simulation without treatment of radiative corrections in the decays. The simulation
is used by the experiments to compute selection efficiencies and to predict probability density distributions of signal
events for the use in maximum-likelihood fits. A study based on [199] suggests that the branching fractions of B0 →
π+π− and B0 → K+π− may be underestimated by up to 10% [200]. Since the effects strongly depend on the final
state and the analysis strategy used, we do not attempt to correct the branching fraction results here. However one
should be aware that this systematic may lead to increased branching fractions for modes that decay to light charged
particles.

1 Analysis of B → ππ and SU(3)-related decays

1.1 Basic formulae and definitions

1.1.1 Transition amplitudes

The general form of the B0 → π+π− decay amplitude, accounting for the tree and penguin diagrams that correspond
to the three up-type quark flavors (u, c, t) occurring in the W loop (see Fig. 18), reads

A+− ≡ A(B0 → π+π−) = VudV
∗
ubMu + VcdV

∗
cbMc + VtdV

∗
tbMt , (93)

and similarly for the CP -conjugated amplitude. One can benefit from the unitarity relation (12) to eliminate one of
the three amplitudes, resulting in the three conventions U, C, T, namely

A+− =




VcdV
∗
cb(Mc −Mu) + VtdV

∗
tb(Mt −Mu) (U)

VudV
∗
ub(Mu −Mc) + VtdV

∗
tb(Mt −Mc) (C)

VudV
∗
ub(Mu −Mt) + VcdV

∗
cb(Mc −Mt) (T)

(94)

�Vud
W+

d

b

d

u

d

u

V ∗
ub �

W+

q = u c t
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u

u

d
V ∗

qb Vqd

Fig. 18. Example of tree (left) and penguin
(right) diagrams for the decay B0 → π+π−
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for which the u (U), c (C) and t (T) amplitude coefficients have been substituted respectively. In the following, we
adopt convention C so that A+− reads

A+− = VudV
∗
ubT

+− + VtdV
∗
tbP

+− , (95)

where T+− and P+− are defined by

T+− ≡ Mu −Mc and P+− ≡ Mt −Mc . (96)

The particular choice of which amplitude to remove in the definition of a total transition amplitude is arbitrary34

and does not have observable physical implications. However the convention does modify the contents of the phe-
nomenological amplitudes T+− and P+−. We will often refer to T+− and P+− amplitudes as “tree” and “penguin”,
respectively, although it is implicitly understood that both of them receive various contributions of distinct topologies,
which are mixed under hadronic rescattering.

1.1.2 CP -violating asymmetries

The time-dependent CP -violating asymmetry of the B0B0 system is given by

aCP (t) ≡ Γ (B
0
(t) → π+π−) − Γ (B0(t) → π+π−)

Γ (B
0
(t) → π+π−) + Γ (B0(t) → π+π−)

= S+−
ππ sin(∆mdt) − C+−

ππ cos(∆mdt) , (97)

where ∆md is the B0B0 oscillation frequency and t is either the decay time of the B0 or the B0 or, at B factories
running at the Υ (4S) mass, the time difference between the CP and the tag side decays. The coefficients of the sine
and cosine terms are given by

S+−
ππ =

2Imλππ

1 + |λππ|2 and C+−
ππ =

1 − |λππ|2
1 + |λππ|2 , (98)

where the CP parameter λππ is given by (we recall that it is assumed |q/p| = 1)

λππ =
q

p

A+−

A+− , (99)

where the phase arg[q/p] = 2 arg[VtdV
∗
tb] ≈ −2β (in our phase convention) arises due to B0B0 mixing. We have used

in the above equations that π+π− is a CP eigenstate with eigenvalue +1.
In the absence of penguin contributions (P = 0), (99) reduces to λππ = e2iα (using the triangle definition (20))

and hence
S+−

ππ [P+− = 0] = sin 2α and C+−
ππ [P+− = 0] = 0 . (100)

In general, the phase of λππ is modified by the interference between the penguin and the tree amplitudes. In addition,
the parameter C+−

ππ will be non-zero if
δ+− ≡ arg[P+−T+−∗] �= 0 , (101)

hence measuring the occurrence of direct CP violation. Defining an effective angle αeff that incorporates the phase
shift

λππ ≡ |λππ|e2iαeff , (102)

and, using |λππ| =
√

1 − C+−
ππ /
√

1 + C+−
ππ , one finds

S+−
ππ = D sin 2αeff , (103)

where D ≡
√

1 − C+−
ππ

2
. Twice the effective angle αeff corresponds to the relative phase between the amplitudes

e−2iβA+− and A+−. It is useful for the following to define the penguin-induced phase difference

∆α ≡ 1
2
(2α− 2αeff) , (∆α ∈ [0, π]) . (104)

We note that the sign of the direct CP asymmetry is related to the α → π+α and δ+− → π+ δ+− ambiguity through
the relation

sign(C+−
ππ ) = sign(sinα) × sign(sin δ) . (105)

34 Note that Mu,c,t amplitudes are intrinsically divergent and only differences between them lead to finite results (see, e.g.,
[201]).
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Fig. 19. Color-suppressed tree diagram for the decay B0 → π0π0

1.1.3 Isospin related decays

Owing to isospin invariance of strong interaction, the amplitudes of the various B → ππ decays are related to each
other. Gronau and London have shown [141] that the measurements of rates and CP -violating asymmetries of the
charged and two neutral ππ final states together with the exploitation of their isospin relations provides sufficient
information to extract the angle α as well as the various T and P amplitudes. Unfortunately, as far as α is concerned,
the general solution is plagued by an eightfold ambiguity within [0, π] [202].

Using convention C, one can write
√

2A+0 ≡
√

2A(B+ → π+π0) = VudV
∗
ubT

+0 + VtdV
∗
tbP

EW ,√
2A00 ≡

√
2A(B0 → π0π0) = VudV

∗
ubT

00
C + VtdV

∗
tbP

00 , (106)

and similarly for the CP -conjugated modes. The C subscript stands for the color-suppressed amplitude (see Fig. 19
for the color-suppressed tree diagram in the decay B0 → π0π0), and the EW superscript stands for the electroweak
penguin amplitude contributing to π+π0. Note that the latter notation only refers to the∆I = 3/2 electroweak penguin
contribution, since the ∆I = 1/2 part is absorbed in the strong penguins. Indeed, gluonic quark anti-quark production
has ∆I = 0 so that QCD penguins can only mediate ∆I = 1/2 transitions of the b quark. As a consequence, the
∆I = 3/2 decay B+ → π+π0 has no strong penguin contribution. Applying the isospin relations [141]

A+0 =
1√
2
A+− +A00 ,

A+0 =
1√
2
A+− +A00 , (107)

with A+0 = A−0, one can rearrange the amplitudes (106)
√

2A+0 = VudV
∗
ub

(
T+− + T 00

C
)

+ VtdV
∗
tbP

EW ,√
2A00 = VudV

∗
ubT

00
C − VtdV

∗
tb

(
P+− − PEW) . (108)

The isospin relations between the three ππ amplitudes in the complex plane are drawn in Fig. 20 for the simplified case
where electroweak penguins are neglected. They represent two distinct triangles for the two CP -conjugated amplitudes.

A00A+−
2/

A+0

Im

Re

2α

2αeff

~
A+0

A+−~
2/

~
A00

Fig. 20. The isospin relations (107) in the complex
plane neglecting electroweak penguins. Note that the
relative B0B0 mixing phase is included in the B tri-
angle (Ãij ≡ e−2iβA

ij
)
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Taking into account the phase shift due to B0B0 mixing, the relative angle between Ã+0 and A+0 adds up to 2α, as
it is shown in the figure.

Equations (107) can be considered as exact to a very good approximation. Isospin-breaking corrections like, e.g., π0–
η, η′ mixing [203] are expected to be below a few percent. We refer to Sect. VI.5.4 for a numerical discussion of isospin-
breaking effects in the B → ρρ case. Nevertheless, extracting α relying on this unique theoretical assumption appears
to be difficult at present, given the number of ambiguities and the experimental uncertainties. In the following, we
therefore explore several scenarios which, though still relying on (107), involve additional experimental and theoretical
inputs.

1.2 Theoretical frameworks

To extract α from the experimental measurements of the CP -violating asymmetries, we use four different scenarios,
with rising theoretical assumptions [204]:

(I) using as input S+−
ππ and C+−

ππ as well the branching fractions B → ππ (all charges) and strong isospin symmetry
SU(2) [141];

(II) using (I) and the branching fraction B0 → K+π− together with SU(3) flavor symmetry, and neglecting OZI-
suppressed penguin annihilation topologies [202];

(III) using (II) and a phenomenological estimate of |P+−| by means of the decay rate of B+ → K0π+, and neglecting
doubly CKM-suppressed penguin and annihilation contributions [206,202,205];

(IV) using S+−
ππ and C+−

ππ and the prediction of the complex penguin-to-tree ratio P+−/T+− in the framework of
QCD Factorization [207,208].

1.2.1 Isospin analysis, isospin bounds and electroweak penguins

It was shown in [141] that using the CP -averaged branching fractions

B+−
ππ ∝ τB0

2
(|A+−|2 + |A+−|2) ,

B+0
ππ ∝ τB+

2
(|A+0|2 + |A−0|2) , (109)

B00
ππ ∝ τB0

2
(|A00|2 + |A00|2) ,

where τB0 and τB+ are the neutral and charged B lifetimes (cf. Sect. III.2.4), and the CP -violating asymmetries

C+−
ππ =

| A+− |2 − | A+− |2
| A+− |2 + | A+− |2 ,

S+−
ππ =

2 Im
(

q
pA

+−∗A+−
)

| A+− |2 + | A+− |2 , (110)

C00
ππ =

| A00 |2 − | A00 |2
| A00 |2 + | A00 |2 ,

one can extract the angle α, up to discrete ambiguities, provided electroweak penguin contributions are negligible
(PEW = 0). The geometrical description of the isospin analysis presented in the preceding section can be conveniently
complemented by the explicit solution in terms of α [209]

tanα =
sin(2αeff)c̄+ cos(2αeff)s̄+ s

cos(2αeff)c̄− sin(2αeff)s̄+ c
, (111)

where all quantities on the right hand side can be expressed in term of the observables as follows:

sin(2αeff) =
S+−

ππ

D
,

cos(2αeff) = ±
√

1 − sin2(2αeff) ,
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c =
√
τB+

τB0

τB0

τB+
B+0

ππ + B+−
ππ (1 + C+−

ππ )/2 − B00
ππ(1 + C00

ππ)√
2B+−

ππ B+0
ππ (1 + C+−

ππ )
, (112)

s = ±
√

1 − c2 ,

c =
√
τB+

τB0

τB0

τB+
B+0

ππ + B+−
ππ (1 − C+−

ππ )/2 − B00
ππ(1 − C00

ππ)√
2B+−

ππ B+0
ππ (1 − C+−

ππ )
,

s = ±
√

1 − c2 .

The eightfold ambiguity for α in the range [0, π] is made explicit by the three arbitrary signs35. The quantity S00
ππ

could also be considered, and would help lifting these ambiguities, but its measurement, which could make use of π0

Dalitz decays for instance, requires very large statistics, which is not available at present.

35 We may consider an alternative amplitude representation, which makes the occurrence of the discrete ambiguities more
explicit [209]:

A+− = µa , A+− = µa e+2iαeff , A+0 = µ ei(∆−α) , A+0 = µ ei(∆+α) ,

A00 = µ ei(∆−α)
(

1 − a√
2
e+i(α−∆)

)
, A00 = µ ei(∆+α)

(
1 − a√

2
e−i(α+∆−2αeff )

)
,

which satisfy the triangular SU(2) relations (107), and where µ, a and a are three unknown real (and positive) parameters
which drive the strength of the branching fractions, while ∆ is a phase. The phase convention chosen here is such that A+− is
real positive, and the A amplitudes include the B0B0 mixing phase arg[q/p]. With this choice, the phase ∆ is not to be viewed
as arising purely from strong interaction since it absorbs the weak phase a priori present in A+−: there is no reason to expect
it to be confined to small values. In terms of the above parameterization, the observables take the form

1
τB0

B+−
ππ = µ2 1

2
(a2 + a2) ,

1
τB+

B+0
ππ = µ2 ,

1
τB0

B00
ππ = µ2 1

2

(
2 +

1
2
(a2 + a2) −

√
2(ac+ ac)

)
,

C+−
ππ =

a2 − a2

a2 + a2 ,

S+−
ππ =

2aa
a2 + a2 sin(2αeff) ,

C00
ππ =

1
2 (a2 − a2) − √

2(ac− ac)

2 + 1
2 (a2 + a2) − √

2(ac+ ac)
,

S00
ππ =

2 sin(2α) + aa sin(2αeff) − a
√

2 sin(α+∆) − a
√

2 sin(α−∆+ 2αeff)
2 + 1

2 (a2 + a2) − √
2(ac+ ac)

.

The eight mirror solutions (for α in [0, π]) are summarized in the table below. Solutions 5 through 8 are just π/2 minus solutions
1 through 4. The eight mirror solutions are strictly equivalent if no input is added, like S00

ππ for example (S00
ρρ,L is experimentally

accessible in the decay B0 → ρ0ρ0, see Sect. VI.5).

Solution α ∆ αeff

1 α ∆ αeff

2 ∆ α αeff

3 −α+ 2αeff −∆+ 2αeff αeff

4 −∆+ 2αeff −α+ 2αeff αeff

5 π
2 − α π

2 −∆ π
2 − αeff

6 π
2 −∆ π

2 − α π
2 − αeff

7 π
2 + α− 2αeff

π
2 +∆− 2αeff

π
2 − αeff

8 π
2 +∆− 2αeff

π
2 + α− 2αeff

π
2 − αeff
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SU(2) bounds

The direct CP asymmetry C00
ππ has not yet been measured so that the extraction of α itself is not possible and one

has to derive upper limits on ∆α instead. It was first pointed out by Grossman and Quinn [142] that a small value
for the branching fraction to π0π0 would mean that the penguin contribution cannot be too large. We stress that the
numerical analysis performed with CKMfitter guarantees the optimal use of the available and relevant experimental
information, once the isospin relations are implemented at the amplitude level. It is nevertheless instructive to derive
analytical bounds on ∆α. As shown by Grossman–Quinn [142], and later rediscussed by one of us [202] and Gronau–
London–Sinha–Sinha (GLSS) [144], one obtains the inequality

cos 2∆α ≥ 1
D

(
1 − 2

τB+

τB0

B00
ππ

B+0
ππ

)
+
τB+

τB0

1
D

(
B+−

ππ − 2 τB0

τB+
B+0

ππ + 2B00
ππ

)2

4B+−
ππ B+0

ππ

, (113)

or, equivalently,

cos 2∆α ≥ 1
D

(
1 − 4

B00
ππ

B+−
ππ

)
+
τB+

τB0

1
D

(
B+−

ππ − 2 τB0

τB+
B+0

ππ − 2B00
ππ

)2

4B+−
ππ B+0

ππ

. (114)

The first term on the right hand side of (113) and (114) corresponds to the limit considered in [202], while the original
Grossman–Quinn bound is obtained when setting D = 1 in the first term on the right hand side of (113).

The above bound has interesting consequences on the discrete ambiguity problem. In the limit where B00
ππ goes to

zero, the GLSS bound (113) merges the eight mirror solutions for α (in the range [0, π]) in two distinct intervals, each
of which containing one quadruplet of them.

Following the same line it is possible to derive lower and upper bounds on the branching fraction into two neutral
pions [144]

B00
GLSS− ≤ B00

ππ ≤ B00
GLSS+ , (115)

with

B00
GLSS± =

τB0

τB+
B+0

ππ +
1
2
B+−

ππ ±
√
τB0

τB+
B+0

ππB+−
ππ (1 +D) ,

where the limits are weakest for D = 1, that is vanishing direct CP violation. Equation (113) can be rewritten [209]

sin2∆α ≤ τB+

τB0

1
D

(B00
ππ − B00

GLSS−
) (B00

GLSS+ − B00
ππ

)
2B+−

ππ B+0
ππ

, (116)

which does not provide new information but makes explicit that α = αeff if B00
ππ reaches either B00

GLSS− or B00
GLSS+ .

This is the case in the formal limit B00
ππ → 0, which is close to being realized in B → ρρ (see Sect. VI.5). However

for B → ππ the lower bound B00
GLSS− in (115) is not so small and as soon as B00

ππ deviates from it, αeff can be rather
different from α, as described further below.

If we assume that α is known, e.g., from the standard CKM fit, we obtain the bound on B00
ππ [209]

B00
α:− ≤ B00

ππ ≤ B00
α:+ , (117)

with

B00
α:± =

τB0

τB+
B+0

ππ +
1
2
B+−

ππ ±
√
τB0

τB+
B+0

ππB+−
ππ

(
1 + D̃α

)
, (118)

and where

D̃α =
√

(1 − sin2 2α)(D2 − S+−
ππ

2
) + S+−

ππ sin 2α .

Since D̃α ≤ D, this bound is tighter than (115). With known α, the CP asymmetry C00
ππ is not a free parameter

anymore: it can be determined using (118)

C00
ππ

±
=

1
B00

ππ(1 + D̃α)

[
− C+−

ππ

(
τB0

τB+
B+0

ππ − D̃α

2
B+−

ππ − B00
ππ

)

±
√

(B00
ππ − B00

α:−)(B00
α:+ − B00

ππ)(D2 − D̃2
α)

]
. (119)

There are two solutions of C00
ππ for a given B00

ππ. An application of (119) is shown in Fig. 30.
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Electroweak penguins

As pointed out by Buras and Fleischer [210] and Neubert and Rosner [211], the electroweak penguin amplitude PEW

in B+ → π+π0 can be related to the tree amplitude in a model-independent way using Fierz transformations of the
relevant current-current operators in the effective Hamiltonian Heff for B → ππ decays

Heff =
GF√

2

[ ∑
q=u,c

VqbV
∗
qd(c1O

q
1 + c2O

q
2) −

10∑
i=3

VtbV
∗
tdciOi

]
+ h. c. . (120)

Here Oq
1 and Oq

2 are tree operators of the Lorentz structure (V −A)×(V −A), O3−6 are short-distance gluonic penguin
operators, and O7−10 are electroweak penguin operators. The Lorentz structure of O7 and O8 is (V − A) × (V + A)
while O9 and O10 are (V −A) × (V −A). In the limit of isospin symmetry, the ∆I = 3/2 part of the latter operators
is Fierz-related to the operators O1 and O2. Since c7,8 are small compared to c9,10, they can be neglected so that one
obtains

PEW

T+0 � −3
2

(
c9 + c10
c1 + c2

)
= +(1.35 ± 0.12) × 10−2 . (121)

The theoretical error on the numerical evaluation of this ratio has been estimated from the residual scale and scheme
dependence of the Wilson coefficients [101]. It also accounts for the neglect of the contributions from O7 and O8 [143].
One notices that there is no strong phase difference between PEW and T+0 so that electroweak penguins do not
generate a charge asymmetry in B+ → π+π0 if this picture holds: this prediction is in agreement with the present
experimental average of the corresponding asymmetry (see Table 8). Although in the SM electroweak penguins in
two-pion modes appear to be small, their inclusion into the full isospin analysis is straightforward and will become
necessary once high-statistics data samples are available.

1.2.2 SU(3) flavor symmetry

We extend the use of flavor symmetries to SU(3), considering the amplitude of the decay B0 → K+π− in convention
C

A+−
Kπ ≡ A(B0 → K+π−) = VusV

∗
ubT

+−
Kπ + VtsV

∗
tbP

+−
Kπ . (122)

With the assumption of SU(3) flavor symmetry and neglecting OZI-suppressed penguin annihilation diagrams (see
right hand diagram in Fig. 21), which contribute to B0 → π+π− but not to B0 → K+π−, the penguin amplitudes in
B0 → π+π− and B0 → K+π− are equal

P+− = P+−
Kπ . (123)

As in the isospin symmetry case, one can derive the following bound [202], which benefits from the CKM enhancement
of the penguin contribution to the B0 → K+π− decay

cos 2∆α ≥ 1
D

(
1 − 2λ2 B+−

Kπ

B+−
ππ

)
, (124)

where λ is the Wolfenstein parameter.
Another possibility [212,213], that would eventually give stronger constraints, would be to identify T+− and T+−

Kπ

in addition to P+− and P+−
Kπ . At first sight such an approximation is similar in spirit to the neglect of OZI-suppressed

�
W+

q = u c t

d

b

d

u

u

s
V ∗

qb Vqs

�W
d

b

d

u

u

d

Fig. 21. Left : penguin diagram for the de-
cay B0 → K+π−. Right : OZI-suppressed pen-
guin annihilation diagram for the decay B0 →
π+π−
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Table 8. Compilation of experimental results on the B → hh′ branching fractions (in units of 10−6) and CP -violating
asymmetries. Limits are quoted at 90% CL. For the averages we use the results from the HFAG [62]. C00

KSπ and S00
KSπ are defined

similarly to (110) while the direct CP asymmetries ACP are defined with an opposite sign: ACP = (|A|2 − |A|2)/(|A|2 + |A|2).
Note that missing radiative corrections in the Monte Carlo simulations used by the experiments may lead to underestimated
branching fractions for modes with light charged particles in the final state (see remark in the introduction to Part VI). The
CDF collaboration has presented the preliminary result ACP (K+π−) = 0.02 ± 0.15 ± 0.02 [224,231], which is however not yet
included in the HFAG average

Parameter BABAR Belle CLEO Average

C+−
ππ −0.19 ± 0.19 ± 0.05 [219] −0.58 ± 0.15 ± 0.07 [220] - −0.46 ± 0.13

S+−
ππ −0.40 ± 0.22 ± 0.03 [219] −1.00 ± 0.21 ± 0.07 [220] - −0.73 ± 0.16

Correlation coeff. −0.02 [219] −0.29 [220] - −0.17

C00
KSπ 0.40+0.27

−0.28 ± 0.10 [221] - - 0.40+0.27
−0.28 ± 0.10

S00
KSπ 0.48+0.38

−0.47 ± 0.11 [221] - - 0.48+0.38
−0.47 ± 0.11

ACP (π+π0) −0.03+0.18
−0.17 ± 0.02 [222] −0.14 ± 0.24+0.05

−0.04 [223] - −0.07 ± 0.14

ACP (K+π−) −0.107 ± 0.041 ± 0.013 [224] −0.088 ± 0.035 ± 0.018 [224] −0.04 ± 0.16 ± 0.02 [225] −0.095 ± 0.028

ACP (K+π0) −0.09 ± 0.09 ± 0.01 [222] +0.23 ± 0.11 [223] −0.29 ± 0.23 ± 0.02 [225] 0.00 ± 0.07

ACP (K0π+) −0.05 ± 0.08 ± 0.01 [226] +0.07+0.09 +0.01
−0.08 −0.03 [223] +0.18 ± 0.24 ± 0.02 [225] +0.02 ± 0.06

B(B0 → π+π−) 4.7 ± 0.6 ± 0.2 [227] 4.4 ± 0.6 ± 0.3 [228] 4.5+1.4 +0.5
−1.2 −0.4 [229] 4.55 ± 0.44

B(B+ → π+π0) 5.5+1.0
−0.9±0.6 [222] 5.0 ± 1.2 ± 0.5 [228] 4.6+1.8 +0.6

−1.6 −0.7 [229] 5.18+0.77
−0.76

B(B0 → π0π0) 2.1 ± 0.6 ± 0.3 [230] 1.7 ± 0.6 ± 0.2 [228] < 4.4 [229] 1.90 ± 0.47

B(B0 → K+π−) 17.9 ± 0.9 ± 0.7 [227] 18.5 ± 1.0 ± 0.7 [228] 18.0+2.3 +1.2
−2.1 −0.9 [229] 18.16 ± 0.79

B(B+ → K+π0) 12.8+1.2
−1.1 ± 1.0 [222] 12.0 ± 1.3+1.3

−0.9 [228] 12.9+2.4 +1.2
−2.2 −1.1 [229] 12.6+1.1

−1.0

B(B+ → K0π+) 22.3 ± 1.7 ± 1.1 [226] 22.0 ± 1.9 ± 1.1 [228] 18.8+3.7 +2.1
−3.3 −1.8 [229] 21.8 ± 1.4

B(B0 → K0π0) 11.4 ± 1.7 ± 0.8 [226] 11.7 ± 2.3+1.2
−1.3 [228] 12.8+4.0 +1.7

−3.3 −1.4 [229] 11.7 ± 1.4

B(B0 → K+K−) < 0.6 [227] < 0.7 [228] < 0.8 [229]

B(B+ → K+K
0
) < 2.5 [226] < 3.3 [228] < 3.3 [229]

B(B0 → K0K
0
) < 1.8 [226] < 1.5 [228] < 3.3 [229]

penguins, because it is violated by exchange diagrams only, that are expected to be power-suppressed36. However as
shown in [202], an estimate of P+− leads to the determination of the shift ∆α, while an estimate of T+− determines
the angle α itself. Hence, as far as α is concerned, the error on the estimate of P+− is a second order effect, while
the error on the estimate of T+− is of leading order. We therefore expect the hadronic uncertainties in the relation
T+− = T+−

Kπ to be potentially more dangerous than in the relation P+− = P+−
Kπ . As a consequence, the ratio T+−

Kπ /T
+−

is kept unconstrained in our fit.
SU(3) flavor symmetry is only approximately realized in nature and one may expect violations of the order of 30%

at the amplitude level. For example, within factorization the relative size of SU(3) symmetry breaking is expected to be
(fK −fπ)/fK , where fK and fπ are the pion and kaon decay constants, respectively. Notwithstanding, the bound (124)
can be considered conservative with respect to SU(3) breaking, since a correction would lead to a stronger bound.
For example, assuming factorization the ratio of branching fractions B+−

Kπ/B+−
ππ would be lowered by (fπ/fK)2 � 0.67.

Since the penguin annihilation contributions, which spoil the relationship between the B → π+π− and B → K+π−
penguin amplitudes, are power and OZI-suppressed, they are expected to be small with respect to the dominant SU(3)
breaking. We will therefore study the constraints derived from (123) as if they were a consequence of strict SU(3)
symmetry, although it is understood that an additional dynamical assumption is made.

36 The term “power-suppression” refers to the quantity ΛQCD/mb � 1.
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1.2.3 Estimating |P+−| from B+ → K0π+

In addition to the theoretical assumptions of Scenario (II), the magnitude |P+−| can be estimated from the branching
fraction of the penguin-dominated mode B+ → K0π+. Neglecting the doubly CKM-suppressed difference between u
and c penguins, as well as the doubly CKM-suppressed tree annihilation contribution, the B+ → K0π+ transition
amplitude reads

A0+
Kπ ≡ A(B+ → K0π+) = V ∗

tbVtsP
0+
Kπ . (125)

Now, if one takes the SU(3) limit and neglects the penguin annihilation and color-suppressed electroweak penguin
contributions, one has [206,202,205]

|P+−| =
fπ

fK

1
R

|P 0+
Kπ| . (126)

The first factor on the right hand side corrects for factorizable SU(3) breaking, while the second factor, R = 0.95±0.23,
is a theoretical estimate, within the QCD Factorization approach, of the residual effects that break the relation between
B → π+π− and B+ → K0π+ penguin amplitudes37 [208]. Our evaluation also includes the uncertainty due to the
neglect of the VusV

∗
ub contribution to B+ → K0π+. As in Scenario (II), the strong phase δ+− remains unconstrained

in Scenario (III). The size of the tree amplitude |T+−| is conveniently deduced from the measurement of B+−
ππ , taking

advantage of the above estimate of |P+−|: the analytical constraint in the (ρ, η) plane cannot be expressed in terms
of the angle α alone, but rather as a degree-four polynomial equation [202], or as a relation between α and γ. Other
methods to estimate the tree amplitude are found in the literature:

– one can use the spectrum of the decay B0 → π+�−ν̄ near q2 = 0 (that is the squared effective mass of the recoiling
�ν system) with theoretical estimates for the form factor [205], to infer an estimate for the quantity |V ∗

ub| × |Tu|,
where Tu is the semileptonic amplitude at q2 = 0. The method is not used here as it provides Tu, which is not
simply related to the full |T+−|, except in the näıve factorization approximation.

– according to (108) and (109), the branching fraction of the tree-dominated decay B+ → π+π0 is given by (neglecting
electroweak penguins)

2B+0
ππ = |VudV

∗
ub|2
[
|T+−|2 + |T 00

C |2 + 2Re
(
T+−T 00

C
∗)]

. (127)

Using theoretical assumptions on the ratio |T 00
C /T+−| one may infer the size of |T+−| from the measured branching

fraction [205].

1.2.4 Beyond näıve factorization

Considerable theoretical progress to calculate the tree and penguin amplitudes in B → hh′ with the use of QCD has
been achieved in the recent years. If such calculations reliably predicted the penguin and tree contributions and their
relative strong phase difference, they could be used to translate a measurement of S+−

ππ and C+−
ππ into a constraint on

the CKM couplings.
The QCD Factorization Approach (QCD FA) [207,208,135] is based on the concept of color transparency [214]. In

the heavy quark limit (mb � ΛQCD), the decay amplitudes are calculated by virtue of a new factorization theorem. To
leading power in ΛQCD/mb and in lowest order in perturbation theory, the result of näıve factorization is reproduced.
It is found that power-dominant non-factorizable corrections are calculable as perturbative corrections in αS since
the interaction of soft gluons with the small color-dipole of the high-energetic (W -emitted) quark-anti-quark pair is
suppressed. Non-factorizable power-suppressed contributions are neglected within this framework. However, due to
a chiral enhancement and although they are formally power-suppressed38, hard-scattering spectator interactions and
annihilation diagrams cannot be neglected. Since they give rise to infrared endpoint singularities when computed
perturbatively, they can only be estimated in a model-dependent way. In [208] these contributions are parameterized
by two complex quantities, XH and XA, that are logarithmically large but always appear with a relatively small factor
proportional to αS.

The QCD FA has been implemented in CKMfitter and is used in two different configurations. The first configuration
defines a leading order (LO) calculation by neglecting the non-factorizable power-suppressed terms, i.e., the annihilation
contribution and the divergent part of the hard spectator diagrams (XH = 0). This configuration is not fully consistent
because the power corrections that are convergent, once factorized, are kept: LO QCD FA is very close to the usual

37 The numerical value of R and its uncertainty are obtained from (126) by estimating |P+−| and |P 0+
Kπ| from the full QCD

FA calculation, as described in Sect. VI.1.2.4.
38 The power-suppression in annihilation diagrams and hard spectator contribution occurs by the ratio rπ

χ = 2m2
π/(mb(mu +

md)), which is numerically of order one.



The CKMfitter Group: CP violation and the CKM matrix 57

näıve factorization model (see, e.g., [215]), and only differs from the latter by small convergent radiative corrections.
In the second configuration, the full QCD FA calculations are used and the quantities XH and XA are parameterized
as [208]

XH,A =
(
1 + ρH,Ae

iφH,A
)
ln
mB

Λh
, (128)

where Λh = 0.5 GeV, φH,A are free phases (−180◦ < φH,A < 180◦) and ρH,A are parameters varying within [0, 1].
In addition to XH and XA, other theoretical parameters used in the calculation such as quark masses, decay

constants, form factors and Gegenbauer moments, are varied within the ranges given in [135]. Therefore, all scenarios
defined in [135] are automatically contained in our results.

Another approach, denoted pQCD [216], differs from QCD FA mainly in the power counting in terms of ΛQCD/mb.
The pQCD approach has not been implemented in CKMfitter yet and is therefore not considered in the following
discussion.

There is an ongoing debate among the experts concerning the reliability of these calculations. The main concerns
are the computation of the chirally enhanced penguins, the endpoint singularities in hard spectator interactions and
the control of non-factorizable annihilation contributions (see, e.g., [217,218]). As we will see, LO QCD FA is very
predictive but fails to describe the experimental data. On the other hand, full QCD FA with parameterized power
corrections is quite successful within large theoretical uncertainties, but it can no longer be viewed as a systematic
expansion of QCD.

1.3 Experimental input

The experimental values for the time-dependent CP asymmetries measured by BABAR [219] and Belle [220] are collected
in Table 8. We have reversed the sign of Belle’s Aππ = −C+−

ππ to account for the different convention adopted. Also
quoted are the statistical correlation coefficients between S+−

ππ and C+−
ππ as reported by the experiments. Significant

mixing-induced CP violation has been observed by Belle. Averaging BABAR and Belle, the no-CP -violation hypothesis
(S+−

ππ = 0, C+−
ππ = 0) is ruled out with a p-value of 1.2 × 10−9, and deviations of 4.7σ and 3.7σ from the S+−

ππ = 0 and
C+−

ππ = 0 hypotheses are observed, respectively39. We note that C+−
ππ �= 0 is incompatible with the näıve factorization

approximation, which predicts no final state interaction phases. Since the time-dependent CP parameters measured by
Belle are outside of the physical domain, we apply the procedure outlined in Sect. II.2.2.3 to obtain the corresponding
CLs within C+−

ππ
2 + S+−

ππ
2 ≤ 1. The results are given in Fig. 25 together with the theoretical predictions (discussed

below).
Also given in Table 8 is the time-dependent CP asymmetry in the B0 → K0

Sπ
0 decay measured by BABAR,

and a compilation of the branching fractions and charge asymmetries (direct CP violation) of all the B → hh′
modes (hh′ = π,K). Most of the rare two-body pseudoscalar-pseudoscalar decay modes have been discovered. The
unobserved KK modes are either mediated via power-suppressed W exchange/annihilation diagrams (B0 → K+K−,
B+ → K+K0, see Fig. 22) or penguin diagrams (B0 → K0K0, B+ → K+K0) and hence are expected to be small.
The ratio of B+−

Kπ/B+−
ππ ∼ 4 is a strong indication of the presence of penguin diagrams. In effect, according to (95) and

(122), if there were no penguin, it would be of the order of λ2. Charge asymmetries are all consistent with zero so
far, except for ACP (K+π−) which differs from zero by 3.4σ. The averages quoted in Table 8 are taken from the Heavy
Flavor Averaging Group [62].

�W

d

b

u

s

s

uV ∗
ub

Vud

Fig. 22. W exchange diagram responsible for the decay B0 → K+K−

39 These exclusion probabilities are estimates only, assuming Gaussian error propagation of the averages.
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1.4 Numerical analysis of B → ππ decays

We ran CKMfitter corresponding to the analysis scenarios (I) through (IV), using the inputs from Table 840. If not
stated otherwise, all plots are produced using the BABAR and Belle averages for S+−

ππ and C+−
ππ , as well as the world

averages for all other observables.

1.4.1 Constraints on α and (ρ, η)

The constraints on α and in the (ρ, η) plane obtained for the various scenarios are plotted in Figs. 23 and 24 and
discussed below41.

– At present, we achieve essentially no useful constraint from the SU(2) analysis (Scenario (I), upper left hand plots).
We find the limit −54◦ < ∆α < 52◦ for CL > 10%, largely dominated by the uncertainty on the contribution from
gluonic penguins (see the dark shaded function in the upper left hand plot of Fig. 23). The asymmetry in the limit
is due to the contribution from electroweak penguins.

– Using in addition SU(3) (Scenario (II)) one begins to rule out regions in the (ρ, η) plane (upper right hand plots).
The wide unconstrained arcs correspond to the still unfruitful bound −29◦ < ∆α < 28◦ for CL > 10%. These
constraints cannot compete with the size of the allowed (ρ, η) region obtained from the standard CKM fit.
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Fig. 23. Confidence levels for α for Scenarios (I) through (IV) (cf. Sect. VI.1.2) of the B → ππ data. The dark shaded function
on the upper left hand plot shows the constraint from SU(2) when the experimental uncertainty on S+−

ππ is set to zero. It hence
displays the uncertainty on |α− αeff | due to the penguin contribution. Also shown on each plot is the result from the standard
CKM fit
40 Other recent analyses can be found in [232,233,218].
41 The presence of non-zero electroweak penguins leads to a small modification in the isospin analysis which breaks the relation
CL(ρ, η) = CL(α(ρ, η)). As a consequence, the CL versus α is uniform if both ρ and η are free varying variables. As a remedy
to this we also use |Vub/Vcb| (see Sect. III.2.5) in the α scans, which introduces a slight effect on the angle itself.
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Fig. 24. Confidence levels in the (ρ, η) plane for Scenarios (I) through (IV) of the B → ππ data. Dark, medium and light
shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Also shown on each plot is the result from the standard CKM fit.
Significant constraints are obtained once the penguin-to-tree ratio is determined with the use of phenomenological or theoretical
input (Scenarios (III) and (IV)). Consistency with the SM is found, in spite of the sensitivity of the data to b → d transitions
that could in principle receive sizable New Physics contributions

– Interesting information is obtained for Scenario (III) (lower left hand plots). The overall uncertainty is dominated
by the errors on (S+−

ππ , C
+−
ππ ) on the one hand, and on the correction factor R (cf. (126)) on the other hand.

For larger statistics the latter will limit the accuracy of the constraint, unless theoretical progress, together with
combined fits of many SU(3)-related modes, is able to estimate R more precisely.

– The constraint is significantly improved when using QCD FA to predict the various amplitudes42. The preferred
region is found in agreement with the standard CKM fit, despite the potential sensitivity of the observables to the
suppressed b → d FCNC transitions. The main theoretical uncertainty is due to the phenomenological parameters
XA and XH [234]. In particular, the sign of η cannot be constrained because the sign of δ+− is not well predicted
by the calculation (see Fig. 26).

42 The full QCD FA calculation (1.2.4) is used here. See Sect. VI.2 for a discussion of the leading order (LO) approach.
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Fig. 25. Predictions for S+−
ππ and C+−

ππ for Scenarios
(I) through (IV). Drawn are CL = 0.05 contours.
The input values for ρ and η are taken from the
standard CKM fit assuming the SM to hold. The
dot with error bars gives the QCD FA prediction
obtained from the global fit to all B → ππ, Kπ ob-
servables (excluding S+−
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determining C+−
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in Sect. II.2.3. For comparison, the CL contours
corresponding to 1σ and 2σ for the experimental
results from BABAR, Belle and their averages are
overlaid. Note that we have applied the statistical
method described in Sect. II.2.2.3 to account for the
presence of the physical boundaries when comput-
ing the CLs
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Fig. 26. Constraints on the penguin-to-tree ratio r+− and the relative strong phase δ+− in B → ππ decays, obtained when
using as additional input the CKM parameters ρ and η from the standard CKM fit. The gradually shaded regions give the CLs
for fits of Scenario (I) (SU(2)): dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Also shown
are the 5% CL contours obtained for Scenario (II) and (III). The elliptical areas are the prediction from QCD Factorization
(Scenario (IV)): full calculation (light shaded) and leading order (dark shaded). On the right hand plot, constraints using
Scenario (I) are given individually for BABAR, Belle and their averages

1.4.2 Constraints in the (S+−
ππ , C

+−
ππ ) plane

The predictions obtained for S+−
ππ and C+−

ππ for Scenarios (I) through (IV) are shown in Fig. 25. Input requirements
to these predictions are the values of ρ and η, as predicted by the standard CKM fit, the errors of which are properly
propagated in the calculations (see Part III). In accordance with the above findings, the present experimental inputs
used in the isospin analysis (I) are not sufficient to constrain S+−

ππ and C+−
ππ . Also, little information is obtained from

the SU(3) analysis (II) and Scenario (III), while the QCD FA (IV) remains the most predictive framework.
To a good approximation, the SU(2) solution in the (S+−

ππ , C
+−
ππ ) plane represents a circle of which the center is

located at (sin 2α, 0) and of which the radius is given by the penguin-to-tree ratio r+− ≡ (Rt/Ru) × |P+−/T+−|. The



The CKMfitter Group: CP violation and the CKM matrix 61

relative strong phase δ+− determines the position on the circle. Consequently, the large uncertainty on S+−
ππ reflects

both the relatively weak sin 2α constraint of the standard CKM fit and the insufficient knowledge of r+−. On the other
hand, the accuracy of the C+−

ππ prediction is determined by r+− and, in case of Scenario (IV), by δ+−. Values of C+−
ππ

that are far from zero, as suggested by the Belle measurement, are in marginal agreement with the QCD FA since it
requires both a large relative strong phase δ+− and a large r+−. If such a large non-zero value for C+−

ππ is confirmed,
it would be a strong hint for significant rescattering effects, independently of potential New Physics contributions.

1.4.3 Constraints on amplitude ratios

One can take another point of view and constrain the unknown penguin-to-tree ratio r+− and its phase δ+− using the
standard CKM fit as input. As in the prediction of S+−

ππ and C+−
ππ in the previous paragraph, this assumes that the

experimental measurements are in agreement with the constraints obtained on ρ and η in the standard CKM fit, i.e.,
no New Physics comes into play. The results are shown in the left hand plot of Fig. 26. The shaded regions give the
CLs obtained from a fit using Scenario (I) (SU(2)). Significant penguin contributions and strong phases are required
to accommodate the fit with the data. Scenario (II) leads to an exclusion of large values for r+−, while Scenario (III)
increases the lower bound. We find that the preferred values for r+− are in agreement with the allowed regions obtained
for Scenario (IV) (QCD FA). The right hand plot of Fig. 26 shows the Scenario (I) constraints separately for BABAR,
Belle and their average. Large non-zero r+− and δ+− are required by Belle’s numbers.

To test color-suppression, the same procedure is applied to constrain the color-suppressed-to-color-allowed ratio
T 00

C /T+−. The resulting CLs are given in Fig. 27. For the magnitude we obtain the lower limit |T 00
C /T+−| > 0.41 for

CL > 5% and a central value of 0.9, which significantly exceeds the näıve 0.2 expectation from factorization. Note that
a central value of order one, if confirmed, would challenge the 1/Nc → 0 limit of QCD independently of the validity
of perturbative factorization.

1.5 Prospects for the isospin analysis

The preceding sections have shown that, at present, relevant information on α requires input from flavor symmetry
other than SU(2) and/or theoretical assumptions, the accuracy of which is hard to determine. However the ultimate
goal of the experimental effort should be a model-independent determination of α. This prejudice given, we shall
attempt an outlook into the future to assess the performance of a full isospin analysis, where C00

ππ is determined in a
time-integrated measurement by the experiments.

Figure 28 (left) shows the CL of the angle α for the following set of observables (branching fractions are given in
units of 10−6):

B+−
ππ = 4.55 ± 0.17 ± 0.09 , S+−

ππ = −0.73 ± 0.07 ± 0.02 ,

B+0
ππ = 5.18 ± 0.28 ± 0.16 , C+−

ππ = −0.46 ± 0.06 ± 0.03 ,

B00
ππ = 1.90 ± 0.20 ± 0.09 , C00

ππ = −0.37 ± 0.24 ± 0.03 ,

where we have kept the central values of the present experimental results. For the parameter C00
ππ we choose one

out of the two solutions preferred by the data when inserting α from the standard CKM fit. The statistical errors
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Fig. 27. Constraints from Scenario (I) (SU(2)) on magnitude and
phase of the color-suppressed-to-color-allowed ratio T 00

C /T+− in
B → ππ decays. The CKM parameters ρ and η are taken from the
standard CKM fit. The gradually shaded regions indicate the CLs:
dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05,
respectively
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Fig. 28. Left : confidence level as a function of α for the full isospin analysis (including C00
ππ) at an integrated luminosity of

1 ab−1, and using the central values and errors given in the text (shaded area). Also shown is the CL for B00
ππ = 1.2×10−6 (down-

diagonal hatched area) for which the ambiguities move together (see right hand plot), and for B00
ππ = 0.66 × 10−6 (up-diagonal

hatched area), which corresponds to B00
GLSS− , i.e., the ambiguities overlap in two quadruplets. The branching ratio values given

on the figure are in units of ×10−6. Right : location of the eight mirror solutions as a function of B00
ππ. The curves refer to

the present central values of branching fractions and CP -violating asymmetries. The horizontal lines indicate the bound (117),
computed at the input value of α, as well as the two branching fractions used for the isospin analyses of the left hand plot.
Electroweak penguins are neglected

are extrapolated to an integrated luminosity of 1 ab−1. For the systematic uncertainties we assume an optimistic
development: the branching ratios are dominated by uncertainties due to the reconstruction of neutrals (2.5% per π0),
while the CP parameters are dominated by the unknown CP violation on the tag side. One observes the characteristic
eightfold ambiguity within [0, π], where the position of the peaks depends in particular on B00

ππ (see comments below).
Although the allowed region for α largely exceeds the one obtained by the standard CKM fit, significant α domains
are excluded and the peaking structure provides metrological information when combined with other α measurements.
We also note that due to the significant penguin pollution in the ππ system, contributions from New Physics may be
present in the data.

As outlined in Sect. VI.1.2.1, the central value of B00
ππ drives the position of the discrete ambiguities for α. The

location of the eight mirror solutions as a function of B00
ππ are shown on the right hand plot of Fig. 28. The curves

refer to the present central values of branching fractions and CP -violating asymmetries. The horizontal lines indicate
the bound (117) as well as the two values used for the isospin analyses represented in the left hand plot (apart from
the nominal setup given above, a second set is used with B00

ππ = 1.2 × 10−6 and the corresponding value C00
ππ = 0.13,

and with all other parameters kept unchanged). The quality of the metrological constraint on α depends on how much
the different solutions overlap. The worst case occurs when several mirror solutions gather around the true value of α
within a distance of about σ(α). As a consequence we note that large values of B00

ππ can lead to a better metrology.
In a third extrapolation we study the best-case scenario, where B00

ππ is chosen to be equal to one of the GLSS
bounds (115). While the upper bound is excluded by experiment, the lower bound, B00

GLSS− = 0.66×10−6, may still be
reached. We choose B00

ππ = (0.66±0.12±0.03)×10−6, as well as S+−
ππ = −0.25±0.07±0.02 and C00

ππ = 0.75±0.39±0.03,
to achieve consistency between the observable set, SU(2), and the standard CKM fit. The modified S+−

ππ value (with
respect to the previous extrapolations) ensures that B00

GLSS− = B00
α:−, which is required for overlapping ambiguities43.

The chosen set of observables is only marginally consistent with the present measurements. The resulting CL for α is
given by the up-diagonal hatched function in the left hand plot of Fig. 28. The 1σ precision on α for this scenario is
found to be 14◦. This study provides an illustration of how precise the measurement of α could turn out to be in the
coming years. However, one should keep in mind that if B00

ππ is not equal to, but only close to B00
GLSS− , the metrology

is spoilt [209].
Figure 29 shows the CLs in the (α,C00

ππ) plane at integrated luminosities of 1 ab−1 (left) and 10 ab−1 (right), where
we have used the same parameter configuration as in the above discussion, with the exception of C00

ππ which is not
used. It is assumed in the extrapolation that the systematic uncertainties do not decrease any further beyond 1 ab−1.
As for B00

ππ, one observes that (for given B00
ππ and C+−

ππ ) the ambiguity pattern for α depends strongly on C00
ππ. An

extraction of α with an accuracy of a few degrees should be within the reach of a next generation B factory.

43 One notices in the up-diagonal hatched function of the left hand plot in Fig. 28 that the ambiguities do not exactly overlap.
This is because electroweak penguins are neglected in the bounds (115), (117), while they are taken into account in the numerical
analysis used to produce the plots.
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Fig. 29. Confidence level in the (α,C00
ππ) plane at integrated luminosities of 1 ab−1 (left) and 10 ab−1 (right), respectively. The

observable set and errors used are given in the text
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Fig. 30. Confidence level in the (B00
ππ, C

00
ππ) plane at an integrated luminosity of 1 ab−1. The left hand plot uses the standard

CKM fit as input including the present uncertainties on α, while the right hand plot assumes perfect knowledge of α. Superim-
posed on the left hand plot is the analytical function C00

ππ(B00
ππ) (119), where electroweak penguins are neglected which explains

the difference with the CL function. The vertical line represents the bound (117)

The parameter plane (B00
ππ, C

00
ππ) is convenient to immediately display the consistency between the measurements

in the ππ system and the standard CKM fit, because it avoids the problem of multiple solutions. The left hand plot of
Fig. 30 represents the expectation for an integrated luminosity of 1 ab−1, using the standard CKM fit as input. Very
large luminosities will be needed in order to significantly uncover a potential disagreement with the SM. The right
hand plot of Fig. 30 is obtained assuming in addition that ρ and η be exactly known and fixed to their present central
values (cf. Table 2).

1.6 Predicting the B0
s → K+K− branching fraction and CP -violating asymmetries

It has been pointed out by Pirjol [236] and Fleischer [213] that one can use SU(3) symmetry44 to relate the amplitudes
in B0

s → K+K− and B0 → π+π− decays. The B0
s → K+K− amplitude is given by

A(B0
s → K+K−) = VusV

∗
ubT

s
KK + VtsV

∗
tbP

s
KK , (129)

and using SU(3) symmetry, one can identify

T s
KK = T+− ,

44 More precisely, only the U-spin subgroup of SU(3) (s ↔ d exchange) is needed. However the accuracy of this approximate
symmetry is not expected to be significantly better than full SU(3). For example, the decay constants fπ+ and fK+ have the
same value in either U-spin or SU(3) limit, although experimentally fK+/fπ+ � 1.22 [12].
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P s
KK = P+− , (130)

which leads to the relation [236,213]
Cs

KK Bs
KK

τB0
s

+
C+−

ππ B+−
ππ

τB0
= 0 , (131)

where Cs
KK = C(B0

s → K+K−) and Bs
KK denote the direct CP -violation asymmetry and branching fraction of

B0
s → K+K−, respectively. The ratio of the B0

s to the B0 lifetimes is 0.951 ± 0.038 [62]. Constraining T+− and P+−
with the B → ππ branching fractions and the S+−

ππ and C+−
ππ measurements, and including the standard CKM fit to

predict the CKM elements, one obtains the hyperbolic shape in the (Bs
KK ,−Cs

KK) plane shown in Fig. 31. We find
the CL > 5% ranges (see also [232])

Bs
KK = (5 − 91) × 10−6 ,

Cs
KK = 0.02 − 0.32 .

These predictions can be compared with the branching fraction and CP asymmetry found for B0 → K+π− (see
Table 8): assuming SU(3) and neglecting all (tree and penguin) exchange topologies they are expected to be equal.
Agreement is observed as illustrated in Fig. 31. Also shown in the figure is the preliminary result from the CDF
collaboration [224,231] on the ratio B(B0

s → K+K−)/B(B0 → K+π−) = 2.71 ± 0.73 ± 0.35 ± 0.08, where the first
error is statistical, the second due to the ratio of B0 and B0

s production in b jets, and the third is systematic. The
error bands shown are at 1σ. Following the same procedure, we also predict the mixing-induced CP asymmetry in
B0

s → K+K− decays to be, for CL > 5%,
Ss

KK = 0.12 − 0.27 .

2 Tests of QCD factorization in B → ππ, Kπ decays

In this Section, we present several fits of the Kπ and ππ data to the calculation of hadronic matrix elements within
the QCD Factorization approach [207,208,135].

2.1 QCD factorization at leading order

All results using QCD FA presented in the previous Section were obtained with the full calculation [208] as defined in
Sect. VI.1.2.4. Given the poor knowledge of the parameters XA and XH , one may examine whether a leading order
calculation (see Sect. VI.1.2.4 for the exact definition) is sufficient to describe the data. Figure 26 shows the QCD FA
predictions for r+− and δ+− using both approaches. The uncertainty in the full QCD FA calculation is dominated
by the unknown parameters XA and XH . The leading order calculation predicts a small positive phase δ+− and a
moderate ratio r+−.
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Fig. 32. Confidence levels in the (ρ, η) plane for the QCD FA at leading order using S+−
ππ and C+−

ππ from BABAR (upper left),
Belle (upper right) and their averages (bottom). Left : dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05,
respectively. Right : the maximum CL is set to 10−3: dark, medium and light shaded areas have CL > 90 × 10−5, 32 × 10−5 and
5 × 10−5. Also shown on each plot is the result from the standard CKM fit

The constraints in the (ρ, η) plane using the LO prediction are shown in Fig. 32 for S+−
ππ and C+−

ππ from BABAR and
Belle separately as well as their averages. In all three cases, the preferred region is located in the negative η half-plane
since δ+− is predicted positive and C+−

ππ is found to be negative by both experiments. Whereas the BABAR results are
compatible with the standard CKM fit, the agreement with Belle is at the 10−4 level. The average of BABAR and Belle
exhibits a compatibility with the standard CKM fit at the 5 × 10−5 level.

2.2 The full ππ and Kπ fit

We perform a global fit of the QCD FA to all branching fractions (ππ and Kπ) and CP asymmetries given in Table 8.
Since the leading order calculation cannot describe the data, we use full QCD FA here.

The upper plots of Fig. 33 show the CLs in the (ρ, η) plane when using only the B → ππ branching fractions
and CP asymmetries (left), and when using only the B → Kπ data (right). The constraint from C+−

ππ and S+−
ππ
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Fig. 33. Confidence level in the (ρ, η) plane for Scenario (IV):
using branching fractions and CP -violating asymmetries of B → ππ
decays (upper left hand plot), B → Kπ decays (upper right hand
plot) and all together (lower plot). Dark, medium and light shaded
areas have CL > 0.90, 0.32 and 0.05, respectively. Also shown is
the constraint from the standard CKM fit

shown in Fig. 24 is now reduced to two distinct zones in the first and the third quadrant of the (ρ, η) plane. The Kπ
measurements prefer large positive values of η. Given the present experimental accuracy, the compatibility of the Kπ
data (using QCD FA) with the standard CKM fit is at the 20% level.

The combined fit to all B → ππ, Kπ observables in the (ρ, η) plane is shown in the lower plot of Fig. 33. The
preferred area is found in excellent agreement (p-value for the χ2

min of 21%) with the standard CKM fit and has
competitive precision. We find

ρ = 0.182+0.045
−0.047

[+0.089
−0.092

]
, (133)

η = 0.332+0.032
−0.036

[+0.056
−0.081

]
, (134)

where the errors outside (inside) brackets are at 1σ (2σ). For the UT angle γ, we find

γ =
(
62+6

−9

[+12
−18

])◦
. (135)

Since to leading order in the Cabibbo angle λ the Kπ system is independent of the CKM phase, the constraint on (ρ, η)
from the combined ππ, Kπ fit is dominated by the π+π− observables. The χ2

min amounts to 13.4 and is dominated
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Fig. 35. Comparison of the results from the global QCD FA fit to B → ππ, Kπ data (shaded boxes) and the unconstrained
QCD FA predictions with experiment for the CP -violating asymmetries (left) and the branching fractions (right) in B → hh′

(h, h′ = π,K) decays. The predictions are obtained ignoring the measurement associated with the observable in the fit. The
experimental results are the world averages quoted in Table 8 and the theory values are those from Table 9. All theory predictions
use the standard CKM fit result as input. The error ranges shown correspond to 1σ

by contribution from the Kπ data. The corresponding χ2
min distribution is given in Fig. 34 (solid line histogram). The

dashed histogram is obtained with unbound parameters ρH,A (we recall that in full QCD FA they are constrained
within [0, 1]). The χ2 probability (p-value) rises to 42% at ρA = 1.4 and ρH = 9.2, where such large values cannot
be considered as corrections anymore. In other words, two additional free parameters parametrizing power corrections
suffice to reconcile the QCD factorization approach with the data. The measured branching fractions for B0 → K+π−
and B0 → K0π0 are in marginal agreement with QCD FA (cf. Table 9). Removing each of these branching fractions
from the nominal (ρH,A < 1) combined ππ, Kπ fit decreases the χ2

min from 13.4 to 7.3 and from 13.4 to 8.5, respectively.

2.3 Data driven predictions for the ππ and Kπ system

In the spirit of likelihood projections, we study the predictions of the combined ππ, Kπ QCD FA fit on each observable,
ignoring the measurement associated with the observable in the fit. The results are hence unbiased by the actual
measurement. In addition to the charmless data we include the standard CKM fit here. The predictions obtained are
summarized in Table 9 and plotted in comparison with the experimental values in Fig. 35. Also given are the results
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Table 9. QCD FA fit results and predictions of ππ and Kπ branching fractions and CP -
violating asymmetries. Left hand part: for each quantity, a full QCD FA fit is performed
to all ππ and Kπ data but the one that is predicted. Central values and CL = 0.32 and
CL = 0.05 uncertainties are quoted in the two first columns; the third column gives the
contribution of the quantity (when included in the fit) to the overall χ2. Right hand part:
raw predictions from QCD FA without constraints from data. In both configurations, the
CKM parameters obtained from the standard CKM fit are also included. Branching fractions
are given in units of 10−6

Fit result Full prediction
Quantity Central value ±CL = 0.32 ±CL = 0.05 ∆χ2

min CL > 5% range

C+−
ππ −0.27+0.08

−0.05
+0.18
−0.09 1.0 −0.45–0.59

S+−
ππ −0.70+0.20

−0.17
+0.38
−0.25 0.0 −1.00–0.11

C00
KSπ 0.039+0.028

−0.036
+0.045
−0.085 1.4 −0.36–0.56

S00
KSπ 0.827+0.037

−0.028
+0.071
−0.056 0.7 0.63–1.00

ACP (π+π0) [10−4] −5.2+1.6
−0.4

+3.6
−0.9 0.2 −6–15

ACP (K+π−) −0.100+0.035
−0.007

+0.063
−0.013 0.0 −0.23–0.26

ACP (K+π0) −0.035+0.042
−0.038

+0.072
−0.131 0.2 −0.40–0.55

ACP (K0π+) 0.0018+0.0036
−0.0041

+0.0059
−0.0044 0.1 −0.005–0.048

B(B0 → π+π−) 3.80+0.79
−0.40

+1.92
−0.90 0.7 1.7–24.8

B(B+ → π+π0) 7.4+0.9
−1.2

+2.0
−2.2 2.5 2.6–17.0

B(B0 → π0π0) 1.05+0.31
−0.29

+0.68
−0.50 2.3 0.2–4.4

B(B0 → K+π−) 22.4+1.2
−1.4

+2.3
−3.0 6.1 2.1–74.3

B(B+ → K+π0) 10.87+0.74
−0.62

+1.69
−1.22 2.0 0.6–45.5

B(B+ → K0π+) 21.1+1.0
−1.2

+1.9
−3.2 0.1 1.5–86.0

B(B0 → K0π0) 8.36+0.56
−0.44

+1.36
−0.86 4.9 0.7–37.0

obtained from QCD FA and the standard CKM fit alone, for which in most cases the uncertainty largely exceeds
the experimental precision45. Instead when the fit is constrained by the experimental data, the combined constraints
determine rather precisely the parameters that are only loosely bounded by the theory. The

predictions of the full QCD FA fit are accurate and found to be in good agreement with the measurements, with
the exception of the above mentioned B(B0 → K+π−) and B(B0 → K0π0), for which however the discrepancy
does not exceed 2.5σ at present. Due to the common uncertainties on the theoretical parameters, the results for the
branching fractions exhibit significant correlations, which have to be taken into account when interpreting the results.
For completeness, we give the linear correlation coefficients evaluated with toy Monte Carlo simulation46 in Table 10.
As an example, the CLs of B(B0 → K+π−) versus B(B0 → K0π0) are plotted in Fig. 36 (the correlation coefficient
is +0.57) and compared with the measurements. A potential increase in the experimental value for B(B0 → K+π−)
(due to radiative corrections that were previously neglected, see the remark in the introduction to Part VI) could help
to reconcile theory and experiment. One observes a significant positive correlation between the direct CP -violation
parameters in π+π− and K+π− decays, which is expected from SU(3) symmetry. We note in addition that

45 The predictions of [135] from the same inputs appear to be much more precise, due to the treatment of the uncertainties
on the theoretical parameters, which the authors vary independently and finally add in quadrature. On the contrary, our
approach Rfit amounts to scan democratically the whole parameter space. While the (commonly found) approach of [135] likely
underestimates the overall uncertainty, Rfit may overestimate it, by ignoring possible fine-tuning configurations where many
theoretical parameters take extreme values in the allowed ranges.
46 The procedure is as follows: for each toy experiment, the experimental observables are fluctuated within their Gaussian
experimental errors; the full QCD FA fit is performed, and the variance between the fit results for the observables is computed.
The coefficients quoted in Table 10 correspond to 500 toy experiments.
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Table 10. Linear correlation coefficients for the QCD FA fit results given in Table 9. The Aij
pq stand for the direct CP -

asymmetry parameters ACP (piqj), and the Bij
pq denote the corresponding branching fractions. Note that these correlations are

not of experimental origin, but due to the uncertainties in the theoretical parameters

C+−
ππ A+0

ππ A+−
Kπ A0+

Kπ A+0
Kπ C00

KSπ S00
KSπ B+−

ππ B+0
ππ B00

ππ B+−
Kπ B0+

Kπ B+0
Kπ B00

Kπ

S+−
ππ −0.44 −0.45 −0.39 +0.10 −0.07 −0.15 +0.39 +0.04 −0.06 +0.08 +0.07 −0.28 +0.34 −0.43
C+−

ππ +1.00 +0.47 +0.79 −0.49 +0.55 −0.35 −0.21 +0.48 +0.01 −0.29 −0.22 +0.22 −0.09 +0.05
A+0

ππ - +1.00 +0.23 +0.02 −0.24 +0.43 +0.13 +0.20 +0.36 +0.11 −0.10 +0.08 −0.28 +0.26
A+−

Kπ - - +1.00 −0.66 +0.72 −0.47 −0.21 −0.02 +0.01 +0.02 −0.00 +0.19 +0.05 +0.05
A0+

Kπ - - - +1.00 −0.74 +0.71 +0.13 −0.04 −0.07 −0.03 +0.16 −0.10 −0.08 +0.13
A+0

Kπ - - - - +1.00 −0.93 −0.14 +0.03 +0.05 +0.04 −0.12 +0.13 +0.31 −0.29
C00

KSπ - - - - - +1.00 −0.11 +0.07 +0.02 +0.00 −0.15 +0.10 +0.35 −0.37
S00

KSπ - - - - - - +1.00 +0.13 +0.75 +0.66 +0.09 −0.24 −0.09 +0.06
B+−

ππ - - - - - - - +1.00 −0.01 −0.51 −0.00 +0.26 +0.05 +0.09
B+0

ππ - - - - - - - - +1.00 +0.83 +0.04 +0.03 −0.21 +0.29
B00

ππ - - - - - - - - - +1.00 +0.14 −0.12 −0.10 +0.17
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Kπ - - - - - - - - - - +1.00 +0.74 +0.57 +0.57
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Fig. 36. Confidence level in the (B(K0π0),B(K+π−)) plane obtained
from the global QCD FA fit to B → ππ, Kπ data ignoring the mea-
surements associated with the observables shown. Dark, medium and
light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. The
hatched areas indicate the 1σ error bands of the experimental results

– the prediction for the not yet measured direct asymmetry in the B0 → π0π0 decay is

C00
ππ = 0.06+0.10

−0.12

[+0.37
−0.24

]
, (136)

where the errors outside (inside) brackets are at 1σ (2σ);
– a large negative value for S+−

ππ is predicted, in contrast to the small value sin 2α (see Table 2) that would be
obtained from the standard CKM fit in the no-penguin case;

– the deviation between sin 2βeff ≡ S00
KSπ measured in B0 → K0

Sπ
0 and the charmonium reference is sin 2βeff−sin 2β =

0.09 ± 0.04;
– the experimental evidence for negative direct CP violation in K+π− is consistent with the (precise) expectation;
– the qualitative picture (hierarchy) of the branching fractions is understood in the SM.

Despite this success and given that both experimental and theoretical uncertainties are still large, particular care is
mandatory when analyzing possible anomalies in B → Kπ decays. In Sect. VI.3 we revisit the Kπ system with the
use of a more phenomenological approach.
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3 Phenomenological analysis of B → Kπ decays

The decays B → Kπ have received considerable attention in the recent literature [238,239,232,240] since a fit to the
data leads to an apparent violation of the approximate sum rule derived in [237]. Although the errors remain large,
it has been argued by the authors of [239,232,240] that a better phenomenological description could be achieved by
including non-standard contributions in electroweak penguins, that is, ∆I = 1 b → s transitions.

In this section we discuss the implications of the experimental results on strong isospin symmetry in B → Kπ
decays, by performing fits to the data under various dynamical hypotheses. We interpret the numerical results by
comparing them to those of the ππ modes, and give our understanding of the present situation.

3.1 Experimental input

We use the branching fractions and charge asymmetries for the B → Kπ modes given in Table 8 as inputs to our fits.
The CP -averaged branching fractions are defined by

Bij ∝ τBi+j

2
(|Aij |2 + |Aij |2) , (137)

and the four CP -violating asymmetries by

Aij =
|Aij |2 − |Aij |2
|Aij |2 + |Aij |2 , (138)

where (i, j) = (+,−) , (0,+) , (+, 0) , (0, 0) and i+ j is the charge of the B meson. Note that A0+ is zero by definition
in some of the approximations considered below. The CP asymmetries C00

KSπ = −A00 and S00
KSπ are defined by

C00
KSπ =

1 − |λK0
Sπ0 |2

1 + |λK0
Sπ0 |2 , (139)

S00
KSπ =

2ImλK0
Sπ0

1 + |λK0
Sπ0 |2 , (140)

where λK0
Sπ0 = − exp

{
i arg[(VtdV

∗
tb)

2]
}
A00/A00 in our phase convention.

3.2 Transition amplitudes

Using the unitarity relation (5) and adopting convention C (cf. Sect. VI.1.1.1), each B → Kiπj decay amplitude can
be parameterized by VusV

∗
ub, VtsV

∗
tb and two complex quantities denoted T ij and P ij . For example, for B0 → K+π−

one has
A+− ≡ A(B0 → K+π−) = VusV

∗
ubT

+− + VtsV
∗
tbP

+− , (141)

and similarly for the other modes. The amplitudes T ij and P ij implicitly include strong phases while the weak phases
are explicitly contained in the CKM factors. An important difference with respect to the ππ modes is that the CKM
ratio |VtsV

∗
tb/(VusV

∗
ub)| ∼ 50 enhances considerably the contribution of loops with respect to tree topologies: this

implies a potentially better sensitivity to unknown virtual particles, and thus to New Physics, but at the same time
this involves more complicated hadronic dynamics.

Without loss of generality, the complete B → Kπ system can be parameterized by eight amplitudes and the CKM
couplings VusV

∗
ub and VtsV

∗
tb. In the following, we will assume isospin symmetry, so that there is a quadrilateral relation

between these amplitudes.

3.3 Isospin relations and dynamical scenarios

Using strong isospin invariance, the B → Kπ amplitudes satisfy the relations [241]

A0+ +
√

2A+0 =
√

2A00 +A+− , (142)

A0+ +
√

2A+0 =
√

2A00 +A+− . (143)

Note that for the CP -conjugate amplitudes one reads for instance A0+ ≡ A(B− → K0π−) and accordingly for the
other charges.
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3.3.1 Neglecting electroweak penguin but not annihilation diagrams

In the absence of electroweak penguin diagrams the isospin analysis leads to two additional constraints since the
two quadrilaterals share the I = 3/2 amplitude as common diagonal, with a length determined from the branching
fractions, while the second diagonals bisect each other [241]:

A+− +
√

2A00 = Ã+− +
√

2Ã00 , (144)√
2A00 +

√
2A+0 =

√
2Ã00 +

√
2Ã+0 , (145)

where Ã = exp [2i arg(VusV
∗
ub)] A. The argument goes as follows: since gluonic penguins are ∆I = 0 transitions, in the

absence of electroweak penguins the amplitude A∆I=1,If =3/2 of the transition from Ii = 1/2 to If = 3/2 is proportional
to VusV

∗
ub and hence

A1,3/2 = Ã1,3/2 . (146)

Note that (144) and (145) separately hold for the T ij and P ij . Under these assumptions it is possible to describe the
full B → Kπ system with four out of the seven complex quantities T ij and P ij . In the following parameterization, we
use P+− and the three tree amplitudes T+−, N0+ = T 0+ and T 00

C = T 00. The notation N0+ refers to the fact that the
tree contribution to the K0π+ mode has an annihilation topology (it also receives contributions from long-distance u
and c penguins). Since B0 → K0π0 is color-suppressed, its tree amplitude is denoted T 00

C .

A+− = VusV
∗
ub T

+− + VtsV
∗
tb P

+− ,

A0+ = VusV
∗
ubN

0+ − VtsV
∗
tb P

+− ,√
2A+0 = VusV

∗
ub (T+− + T 00

C −N0+) + VtsV
∗
tb P

+− , (147)√
2A00 = VusV

∗
ub T

00
C − VtsV

∗
tb P

+− .

In the absence of electroweak penguins, it is possible to invert the expressions for the amplitudes and to extract the
eight unknown quantities: |VusV

∗
ub T

+−|, |VusV
∗
ub N

0+|, |VusV
∗
ub T

00
C |, |VtsV

∗
tb P

+−|, three relative strong phases and the
weak phase α from the experimental observables47 (the so-called Nir–Quinn method [241]). However, as was stressed
in [242], the discrete ambiguity problem is even more delicate than in the ππ case, because the relative angles between
the amplitudes are not well constrained by the quadrilateral construction.

The constraint obtained on the angle α is shown in Fig. 37. Although it peaks near the value from the standard
CKM fit, the constraint is weak. Very large statistics would be required for a meaningful determination of α by this
method. More interesting, perhaps, is the constraint on the annihilation-to-emission ratio, represented by the quantity
|N0+/T+−| given on the right hand plot of Fig. 37: although this ratio is expected to be suppressed from the point
of view of QCD factorization (see the next Section), large values (of order one) cannot be excluded. Note that large
contributions from annihilation topologies, if extrapolated to B+ → K+K0 in the SU(3) limit, would eventually enter
in conflict with the experimental bounds [135].
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Fig. 37. Left : confidence level as a function of the CKM angle α, in the Nir–Quinn approximation (no electroweak penguins).
The hatched region represents the constraint from the standard CKM fit. Right : constraint on the annihilation-to-tree amplitude
ratio |N0+/T+−|, as defined in (147). Electroweak penguins are neglected

47 The dependence with respect to α comes from the interference between VusV
∗

ub in the ∆I = 1 amplitude with VtdV
∗

tb in the
B0B0 mixing.
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Fig. 38. Confidence level in the (ρ, η) plane for the isospin analysis of B → Kπ decays within the framework of [243] (see
text). In the left hand plot N0+ is set to zero, while in the right hand plot it is allowed to vary freely within 10% of the T+−

dominant amplitude. Dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Also shown on each
plot is the prediction from the standard CKM fit

3.3.2 Standard Model electroweak penguins and vanishing annihilation topologies

Since the pioneering work of Nir and Quinn it has been realized that gluonic penguins are likely to dominate inB → Kπ,
and that CKM-enhanced electroweak penguins would even compete with CKM-suppressed T -type amplitudes [244].
Thus one can add two ∆I = 1 amplitudes PEW and PEW

C that come with the CKM factor48 VtsV
∗
tb :

A+− = VusV
∗
ub T

+− + VtsV
∗
tb P

+− ,

A0+ = VusV
∗
ubN

0+ + VtsV
∗
tb (−P+− + PEW

C ) ,√
2A+0 = VusV

∗
ub (T+− + T 00

C −N0+) + VtsV
∗
tb (P+− + PEW − PEW

C ) , (148)√
2A00 = VusV

∗
ub T

00
C + VtsV

∗
tb (−P+− + PEW) ,

where PEW
C is expected to be color-suppressed with respect to PEW.

The general parameterization (148) involves 11 hadronic parameters and the CKM couplings, which cannot be
extracted from the nine independent Kπ observables. In the SU(3) symmetry limit, the PEW amplitude can be
expressed model-independently in terms of the sum T+− + T 00

C , just the same way as for ππ [211]: this removes two
hadronic parameters, which is however not yet enough to close the system. Hence without an additional dynamical
assumption one cannot extract a correlation in the (ρ, η) plane from the Kπ observables alone.

Faced with this problem the authors of [243] proposed to neglect all exchange and annihilation topologies and
showed that in principle the apex of the Unitarity Triangle can be determined, up to discrete ambiguities (see also
[245] for a short review of other approaches analyzing the Kπ system). The additional hypotheses are

– negligible annihilation and long-distance penguin contributions to B+ → K0π+:

N0+ = 0 . (149)

– SU(3) limit for the color-allowed electroweak penguin amplitude:

PEW = R+ (T+− + T 00
C
)
. (150)

– SU(3) limit and negligible exchange contributions for the color-suppressed electroweak penguin amplitude:

PEW
C =

R+

2
(
T+− + T 00

C
)− R−

2
(
T+− − T 00

C
)
. (151)

48 The ∆I = 0 contribution from electroweak penguins can be absorbed in the P+− amplitude.
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Fig. 39. Constraints on the complex tree-to-penguin amplitude ratio in B0 → K+π− decays (left), and the complex color-
suppressed-to-color-allowed amplitude ratio (right), obtained when using as additional input the CKM parameters ρ and η from
the standard CKM fit. The gradually shaded regions give the CLs within the framework of [243]: dark, medium and light shaded
areas have CL > 0.90, 0.32 and 0.05, respectively

In the above equations R+ and R− are constants given by49

R+ = −3
2
c9 + c10
c1 + c2

= +(1.35 ± 0.12) 10−2 ,

R− = −3
2
c9 − c10
c1 − c2

= +(1.35 ± 0.13) 10−2 . (152)

The phenomenological fit is thus expressed in terms of T+−, P+−, T 00
C and (ρ, η), that is five hadronic parameters and

two CKM parameters. Figure 38 (left) shows the constraints on the unitarity plane obtained within this approach.
The intricate shape of the CLs is mainly due to the convolution of the Nir–Quinn constraints on the CKM angle α
and the explicit CKM dependence of the electroweak penguins in (150)–(151).

Using the same framework and the standard CKM fit as an additional input, we have performed a constrained
fit of the tree-to-penguin and color-suppressed-to-leading-tree amplitude ratios (Fig. 39 left and right, respectively).
Because of the 3.3σ evidence of negative direct CP asymmetry in B0 → K+π−, the relative tree-to-penguin phase
(left hand plot) is positive. It is surprising that the measurements seem to indicate that the expected double CKM
suppression of the tree-to-penguin ratio is well compensated by a large ratio of the hadronic matrix elements (Fig. 39,
left), which tends to contradict the trend observed in the ππ system. We further discuss this point in Sect. VI.6.
Another striking feature of the fit results, which has been already observed in π0π0 versus π+π−, is the value of the
color-suppressed amplitude as compared to the leading-tree one (Fig. 39, right): order one is preferred, and a zero
value for this amplitude is excluded.

3.3.3 Including a correction to the no-rescattering assumption

To correct the assumption of a negligible VusVub∗ term in B+ → K0π+, we attempt to include an estimate for it into
the amplitude parameterization. Model-dependent contributions to this term have been evaluated in the QCD FA
formalism [208,135] and are found to be around 10% in magnitude with respect to the leading T+− amplitude. Since
this estimate is fairly uncertain50, we assign a 100% theoretical error to |N0+| and let its phase δ0+ vary in the fit:

N0+ = (0.1 ± 0.1) |T+−| eiδ0+
. (153)

The transition amplitudes then read as in (148). Note that in this model, the expressions for the electroweak penguin
remain unchanged with respect to (150), (151). While this is true for PEW (up to a small correction coming from Q7,8

operators), it is incorrect for PEW
C , which receives a contribution from exchange topologies that cannot be expressed

in terms of the Kπ amplitudes alone [246]. We assume that the effect of this approximation is negligible.
49 The numerics for R+ and R− has been worked out as in the ππ case (121), while the correlation between them is neglected.
Equation (151) has been first derived in [246].
50 Annihilation topologies are expected to be suppressed by ΛQCD/mb. The authors of [208] estimate them from a hard-
scattering point of view, which results in a stronger, model-dependent suppression proportional to αSΛQCD/mb.
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Fig. 40. Constraints on the complex quantities XEW (left, where XEW
C is fixed to 1) and XEW

C (right, where XEW is fixed to
1) defined in (154) and (155), respectively. Dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively.
The standard CKM fit is used as input to obtain these plots

The constraints obtained in the unitarity plane are shown on the right hand plot of Fig. 38. The relaxed framework
does not lead to major differences with respect to the N0+ = 0 hypothesis (left hand plot of Fig. 38). We stress that
no significant constraint is obtained on the phase δ0+, and that the fit converges systematically towards the maximal
allowed value for

∣∣N0+
∣∣ in (153). With much improved experimental accuracy, the N0+ = 0 assumption will become

crucial to obtain meaningful constraints on ρ and η.

3.3.4 Constraining the electroweak penguins

To investigate whether the data together with the standard CKM fit can reveal indirect evidence of electroweak
penguin contributions, we correct (150), (151) by introducing two new complex parameters XEW and XEW

C

PEW = XEW [R (T+− + T 00
C
)]

, (154)

PEW
C = XEW

C
[
RT 00

C
]
, (155)

where we have imposed R+ = R− ≡ R. Within the SM and under the assumptions already explicitly stated, we expect
XEW ≈ XEW

C ≈ 1. We introduce two new fit scenarios: a first where XEW ≡ 1 and XEW
C is free to vary in the fit

(magnitude and phase), and a second where conversely XEW
C ≡ 1 and XEW is let free.

The CLs (using the standard CKM fit as input) found for XEW (left) and XEW
C (right) are given in Fig. 40.

The constraints on both electroweak penguin contributions are marginal and essentially any value of the relevant
parameters can accommodate the data. This said, one notices that the standard values XEW = XEW

C = 1 correspond
to large CL regions. We also point out that current data do not particularly favor a zero value for the strength of the
color-suppressed electroweak penguin XEW

C . Hence, from our point of view, it is not justified in (148) to neglect PEW
C

while keeping PEW, as is done by the authors of [239,232]: both electroweak penguin amplitudes may be comparable
in magnitude.

3.4 Kπ observables from ππ hadronic parameters

In Sect. VI.3.3.2 we have found that the present data point towards noticeably different values for the hadronic
parameters T+−, P+− and T 00

C in the Kπ system, compared to the ππ one, whereas they are expected to be equal in
the SU(3) limit, if annihilation and exchange topologies are negligible. Another manifestation of the same trend has
been explored in [239,232], where the authors compute the Kπ observables with the use of the hadronic parameters
found in fits to ππ decays. The pattern obtained that way differs from the one observed in the Kπ data. We repeat
this exercice with CKMfitter, using the following ratios of CP -averaged branching fractions51

Rnc =
τB+

τB0

B(B0 → K+π−) + B(B0 → K−π+)
B(B+ → K0π+) + B(B− → K0π−)

= 0.91+0.08
−0.07 [1.2σ] ,

51 The ratio Rnc is denoted R in [239,232].
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Fig. 41. Ratios of branching fractions (156) versus the direct CP asymmetry parameter in B+ → K+π0 decays as predicted
from B → ππ and the standard CKM fit, assuming SU(3) flavor symmetry and neglecting all annihilation and exchange
diagrams. Dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. The hatched bands indicate the
1σ regions of the corresponding measurements. (See also Fig. 31)

Rn =
1
2

B(B0 → K+π−) + B(B0 → K−π+)
B(B0 → K0π0) + B(B0 → K0π0)

= 0.78+0.11
−0.09 [1.8σ] , (156)

Rc = 2
B(B+ → K+π0) + B(B− → K−π0)
B(B+ → K0π+) + B(B− → K0π−)

= 1.16+0.13
−0.11 [1.4σ] ,

where the numbers in brackets indicate the departure (in standard deviations) from one, the value predicted by gluonic
penguin dominance. Note in this context that the ratio of two Gaussian quantities (like branching fractions) does not
have a Gaussian probability density (see, e.g., the discussion in Appendix C of [6]).

We assume in the following the same (strong) hypotheses as in [212,239,232], namely exact SU(3) symmetry and
neglect of all annihilation and exchange topologies. This allows us to identify

T+−
Kπ = T+−

ππ , P+−
Kπ = P+−

ππ , T 00
Kπ = T 00

ππ , (157)

while electroweak penguins remain estimated according to (150), (151). The ππ tree and penguin amplitudes are
extracted from the corresponding data using the standard CKM fit, along the line described in Sect. VI.1.4.3. The Kπ
observables evaluated that way are shown on Fig. 41, where the Rnc, Rn and Rc ratios, as well as the CP asymmetry
CK0π0 , are represented as functions of the CP asymmetry ACP (K+π0). The overall normalization of the branching
fractions as given by, e.g., B(K+π−), and the CP asymmetry ACP (K+π−) can be read off Fig. 3152. The experimental
values are indicated by the hatched 1σ error bands.

The two-fold discrete ambiguity (Fig. 41) corresponds to the two possible solutions for the phase of T 00
C /T+−

in the ππ system (see Fig. 27). The negative one for the latter is preferred by the measurement of ACP (K+π0),
52 As already pointed out, in the absence of annihilation and exchange topologies, the amplitudes for B0 → K+π− and
B0

s → K+K− are equal: hence one may read B0 → K+π− instead of B0
s → K+K− on Fig. 31.
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which is consistent with zero. While there is agreement between the predicted values of Rc and CK0π0 and the
corresponding measurements, a larger Rn is found, which emphasizes the somewhat large branching fraction of B0 →
K0π0 (and confirms the findings of [237,135,238,239,232]). As a consequence, we find that the predicted Rnc exceeds
the measurement, which is due to the contribution of PEW

C . Putting the latter amplitude to zero like [239,232] would
decrease the central value of Rnc to ∼ 0.94 (while not changing the two other ratios), in better agreement with the
experimental value.

Despite the intriguing aspect of the plots in Fig. 41, we stress that the present experimental accuracy does not
allow us to draw definite conclusions. To assess the overall compatibility, we have performed a global ππ and Kπ fit
with the assumptions (157) and with the input of the standard CKM fit, resulting in a decent p-value of 25%: this
is significantly better than the 1.6% compatibility (2.4σ) that is found from the evaluation of an approximate sum
rule [238]. This is however consistent with the findings of [235]. To date we cannot exclude the hypotheses (157) within
the SM.

Nevertheless, if more precise data confirm the present pattern of the Kπ modes with respect to the ππ ones, a
challenge would be given to the theory. Various effects could come into play.

– Significant annihilation and exchange topologies and/or SU(3) breaking (in other words, non-trivial rescattering
effects): while large contributions of this type are unlikely, one has learned fromD meson decays, fromB0 → D−

s K
+,

and from unexpectedly large color-suppressed transitions from beauty to charm, that the calculation of the heavy
meson non-leptonic decays is very difficult. As for charmless final states, fits using QCD FA (Sect. VI.2) require
non-vanishing power corrections, even if they finally turn out to be moderate. Hopefully, with the decrease of the
experimental bounds on the suppressed B → KK modes, multichannel studies will provide more information.

– Experimental effects: absolute measurements of rates represent difficult analyses. For example, radiative corrections
to the decays with charged particles in the final states have not been taken into account so far by the experiments.
Their inclusion is expected to lead to increased branching fractions of modes with (light) charged particles in the
final state (cf. the introduction to Part VI). As a consequence, the ratios Rnc and Rn should increase, which could
improve the agreement with the indirect constraints from the ππ system (see Fig. 41).

– New Physics in loop-dominated amplitudes: according to the quantum numbers of the new field, one may have
anomalies in b → d, ∆I = 1/2 (gluonic) and/or ∆I = 3/2 (electroweak) penguin amplitudes, and/or in b → s,
∆I = 0 (gluonic) and/or ∆I = 1 (electroweak) penguin amplitudes. This would require the introduction of new
parameters, which would need sufficiently accurate data to be fitted.

The authors of [239,232] have studied the latter possibility within a specific class of New Physics models, where the
hierarchy between b → d and b → s transitions is the same as in the SM (∼ λ), and where New Physics only enters as
an enhanced ∆S = ∆I = 1 electroweak penguin amplitude PEW with a single (unknown) weak phase. This scenario
is minimal in the sense that only one magnitude and one phase has to be adjusted in order to describe the data. As a
by-product of its simplicity, its “naturalness” can be questioned: there is no obvious reason to exclude the possibility
that the failure of color-suppression in the ππ modes is a consequence of significant non-standard corrections; moreover,
the complete NP effect may not be proportional to a single CP -violating phase53, and finally, the assumption that
PEW is real with respect to the sum T+− + T 00

C , as it is in the SM54, may be significantly violated.

4 Analysis of B → ρπ decays

In this section we discuss the phenomenological implications of the experimental results from the BABAR collabora-
tion [247] on time-dependent CP -violating asymmetries in B0 → ρ±π∓ decays. We use amplitude relations based on
flavor symmetries as explicit theoretical input to dynamical constraints55. The analysis is restricted to the quasi-two-
body representations of B0 → (π±π0)π∓ decays, corresponding to distinct bands in the three-pion Dalitz plot. Wrong
charge assignments due to the finite width of the ρ resonance and interference effects between different two-body
states are neglected. It has been pointed out in [252] that this neglect induces biases on the observed CP and dilution
parameters that can amount to up to 8% depending on the size of the B0 → ρ0π0 amplitude56. In the future full
Dalitz plot CP analyses [253,201], these model-dependent uncertainties will be significantly reduced.

53 The most general parameterization would imply to introduce two new CP -violating phases, because the arbitrary sum∑
i M

NP
i e±iφi can be rewritten as M̃NP

1 ei±φ̃1 + M̃NP
2 ei±φ̃2 , where the Mi are CP -conserving complex numbers and the φi are

CP -odd.
54 For this to be true, one would have to show that NP does not enhance the coefficients c7,8, see (150).
55 The present analysis does not include a discussion of results on pseudoscalar-vector modes from QCD Factorization [135,248–
250] or SU(3) symmetry including all SU(3) multiplets [251], since this goes beyond the scope of this paper. A dedicated work
on this will be forthcoming.
56 Whereas the main part of the interference region between the ρ+ and ρ− has been removed from the analysis, the ones
between charged and neutral ρ’s are kept [247].
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As in all charmless analyses related to the UT angle α, the phenomenological effort focuses on the determination
of the penguin contribution to the transition amplitudes. We approach the problem following a similar hierarchical
structure as in Sect. VI.1.

(I) Using as input the present (yet incomplete) measurements or bounds on branching fractions of the modes involved
with the SU(2) analysis. Contributions from electroweak penguins are neglected57. We also extrapolate the isospin
analysis to future integrated luminosities of 1 ab−1 and 10 ab−1, using educated guesses for measurements and
experimental errors.

(II) Using (I) and the rates of B0 → K∗+π− and B0 → ρ−K+ decays together with SU(3) flavor symmetry and
neglecting OZI-suppressed penguin annihilation topologies.

(III) Using (II) and phenomenological estimates of |P+−| and |P−+| from the rates of B+ → K∗0π+ (measured) and
B+ → ρ+K0 (upper limit) decays, respectively, together with SU(3) flavor symmetry and neglecting annihilation
and long-distance penguin topologies.

4.1 Basic formulae and definitions

We follow the conventions adopted in Sect. VI.1 and use the unitarity of the weak Hamiltonian to eliminate the charm
quark loop out of the penguin diagrams (C convention) in the transition amplitudes. The complex Standard Model
amplitudes of the relevant processes represent the sum of complex tree (T ) and penguin (P ) amplitudes with different
weak and strong phases. The corresponding diagrams for the decay B0 → ρ±π∓ are the same as for B0 → π+π− (see
examples in Fig. 18). The transition amplitudes read

A+− ≡ A(B0 → ρ+π−) = VudV
∗
ubT

+− + VtdV
∗
tbP

+− ,

A−+ ≡ A(B0 → ρ−π+) = VudV
∗
ubT

−+ + VtdV
∗
tbP

−+ ,

A+− ≡ A(B0 → ρ+π−) = V ∗
udVubT

−+ + V ∗
tdVtbP

−+ ,

A−+ ≡ A(B0 → ρ−π+) = V ∗
udVubT

+− + V ∗
tdVtbP

+− ,

(158)

where the ρ meson is emitted by the W boson in the case of A+− and A−+, while it contains the spectator quark in
the case of A−+ and A+−.

The time-dependent CP asymmetries is given by

a±
CP (t) ≡ Γ (B0(t) → ρ±π∓) − Γ (B0(t) → ρ±π∓)

Γ (B0(t) → ρ±π∓) + Γ (B0(t) → ρ±π∓)

= (Sρπ ±∆Sρπ) sin(∆mdt) − (Cρπ ±∆Cρπ) cos(∆mdt) , (159)

where the quantities Sρπ and Cρπ parameterize mixing-induced CP violation and flavor-dependent direct CP violation,
respectively. The parameters∆Sρπ and∆Cρπ are CP -conserving:∆Sρπ is related to the strong phase difference between
the amplitudes contributing to B0 → ρ±π∓ decays, while ∆Cρπ describes the asymmetry (dilution) between the rates
Γ (B0 → ρ+π−) + Γ (B0 → ρ−π+) and Γ (B0 → ρ−π+) + Γ (B0 → ρ+π−). Owing to the fact that B0 → ρ±π∓ is not
a CP eigenstate, one must also consider the time- and flavor-integrated charge asymmetry

Aρπ ≡ |A+−|2 + |A+−|2 − |A−+|2 − |A−+|2
|A+−|2 + |A+−|2 + |A−+|2 + |A−+|2 , (160)

as another source of possible direct CP violation.
We reorganize the experimentally convenient, namely uncorrelated, direct CP -violation parameters Cρπ and Aρπ

into the physically more intuitive quantities A+−
ρπ , A−+

ρπ , defined by

A+−
ρπ ≡ |κ+−|2 − 1

|κ+−|2 + 1
= −Aρπ + Cρπ + Aρπ∆Cρπ

1 +∆Cρπ + AρπCρπ
, (161)

A−+
ρπ ≡ |κ−+|2 − 1

|κ−+|2 + 1
=

Aρπ − Cρπ − Aρπ∆Cρπ

1 −∆Cρπ − AρπCρπ
,

57 The treatment advertised in (120) cannot be directly translated to the ρπ system, if considered as a two-body decay. Only
in the case of a full Dalitz plot analysis, that allows one to extract the ∆I = 3/2 tree amplitude, is it possible to take into
account EW penguin contributions in a model-independent way [143]. Since we learned from the ππ system that these effects
are small, we can choose to neglect them for the numerical discussion of present ρπ CP results.
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where

κ+− ≡ q

p

A−+

A+− , κ−+ ≡ q

p

A+−

A−+ , (162)

so that A+−
ρπ (A−+

ρπ ) involves only diagrams where the ρ meson is emitted by the W boson (contains the spectator
quark).

In analogy to the ππ system, we introduce the effective weak angles that reduce to 2α in the absence of penguins

2α+−
eff ≡ arg κ+− , 2α−+

eff ≡ arg κ−+ , (163)

so that Sρπ and ∆Sρπ, which are given by

S +∆Sρπ =
2Imλ+−

1 + |λ+−|2 , (164)

S −∆Sρπ =
2Imλ−+

1 + |λ−+|2 ,

where58

λ+− ≡ q

p

A+−

A+− , λ−+ ≡ q

p

A−+

A−+ , (165)

can be rewritten as

S +∆Sρπ =
√

1 − (C +∆Cρπ)2 sin(2α+−
eff + δ̂) , (166)

S −∆Sρπ =
√

1 − (C −∆Cρπ)2 sin(2α−+
eff − δ̂) ,

58 The λ+−(−+) involve only one ρπ charge combination, but both amplitude types T (P )+− and T (P )−+. They are insensitive
to direct CPV but their imaginary part is directly related to the weak phase α (though complicated by strong phase shifts and
penguins). The quantities κ+−(−+) involve both ρπ charges, but only one amplitude type, corresponding to whether ([−+]) or
not ([+−]) the ρ has been produced involving the spectator quark. Their moduli are linked to direct CPV while their phases
measure effective weak angles α−+(+−)

eff defined further below.
Compared to CP eigenstates, the λ+− and λ−+ do not have the desired properties under CP transformation, i.e., λ+− 	= 1
or λ−+ 	= 1 does not automatically entail CP violation. These inequalities are a necessary but not a sufficient condition.
Appropriate λ’s can be easily constructed. They should reflect the CP and the flavor specific character of B0 → ρ±π∓ decays.
A possible definition is

˜λCP ≡ λ+− · λ−+ , ˜λtag ≡ λ+−/λ−+ ,

where ˜λCP 	= 1 in case of direct or mixing induced CP violation, and for example ˜λtag = 0 for the case that B0 → ρ+π− is a
flavor eigenstate. A more practical definition is given by:

|λCP |2 ≡ |λ+−|2 + |λ−+|2 + 2|λ+−|2|λ−+|2
2 + |λ+−|2 + |λ−+|2 ,

|λtag|2 ≡ 1 + 2|λ+−|2 + |λ+−|2|λ−+|2
1 + 2|λ−+|2 + |λ−+|2|λ+−|2 ,

ImλCP ≡ Imλ+−(1 + |λ−+|2) + Imλ−+(1 + |λ+−|2)
2 + |λ+−|2 + |λ−+|2 ,

Imλtag ≡ Imλ+−(1 + |λ−+|2) − Imλ−+(1 + |λ+−|2)
1 + 2|λ−+|2 + |λ−+|2|λ+−|2 ,

which has the desired properties, since if:

– B0 → ρ+π− is flavor eigenstate, e.g., A−+ = A+− = 0 so that λ+− = 0 and λ−+ = ∞, one has λtag = 0 with maximal
dilution. The mode is self-tagging as is, e.g., B0 → ρ−K+, and no mixing-induced CPV can occur.

– B0 → ρ±π∓ behaves like a CP eigenstate, i.e., |A+−| = |A−+| and |A+−| = |A−+| so that |λ+−| = |λ−+| = |λ|, one has
|λtag| = 1 with minimal dilution, and λCP = λ. One could hence disregard the charge of the ρ in the analysis and just look
at the time-dependent asymmetry between B0 → (ρπ)0 and B0 → (ρπ)0.

Note that in the presence of penguins, the value of λtag does depend on the weak phase α.
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with59 δ̂ = arg[λ+−κ−+∗] = arg[λ−+∗
κ+−] = arg[A−+A+−∗].

In the absence of penguin contributions (P+− = P−+ = 0), one has |κ+−| = |κ−+| = |λ+−λ−+| = 1, that is
α+−

eff = α−+
eff = α, so that the observables reduce to simple functions of α, δ̂ and r̂:

Sρπ =
2r̂

1 + r̂2
sin 2α cos δ̂ ,

∆Sρπ =
2r̂

1 + r̂2
cos 2α sin δ̂ ,

Cρπ = 0 , (167)

∆Cρπ =
1 − r̂2

1 + r̂2
,

Aρπ = 0 ,

A+−
ρπ = A−+

ρπ = 0 ,

with r̂ = |T−+/T+−|. Hence α can be determined up to an eightfold ambiguity within [0, π]60. If furthermore B0 →
ρ±π∓ represents an effective CP eigenstate (T+− = T−+), the parameters simplify to Sρπ = sin 2α and ∆Sρπ =
Cρπ = ∆Cρπ = Aρπ = 0, hence reproducing the zero-penguin case in B0 → π+π− decays. If the relative strong phase

vanishes, but there exists a non-zero dilution rT+− �= 0 (i.e., ∆Cρπ �= 0), one has Sρπ =
√

1 −∆C2
ρπ sin 2α.

Branching fractions are in general given by the sum of the contributing squared amplitudes, where final states (ρπ
charges) are summed and initial states (B flavors) are averaged. The B0 → ρ±π∓ branching fraction reads

B±∓
ρπ ∝ τB0

2
(|A+−|2 + |A−+|2 + |A−+|2 + |A+−|2) . (168)

Observables from other modes

The various analyses discussed here involve SU(2) and SU(3) flavor partners of the signal mode B0 → ρ±π∓. We
use branching fractions (B) as well as charge asymmetries (A) for the charged B and self-tagging channels. They are
defined by

Bhh′ ≡ B(B → hh′) ∝ τB
2
(|Ahh′ |2 + |Ahh′ |2) , (169)

Ahh′ ≡ |Ahh′ |2 − |Ahh′ |2
|Ahh′ |2 + |Ahh′ |2 , (170)

where τB denotes the lifetime of the decaying B meson (neutral or charged). More details are given in the following.

4.2 Experimental input

The present (Winter 2004) results (including world averages taken from the HFAG [62]) for the branching fractions
and CP -violating asymmetries of all B → ρπ decays are given in Table 11. Also given are the results for the modes
59 The alternative parameterization introduced in [209] (see Footnote 35 in Sect. VI.1.2.1) can be extended to the B → ρπ
system. Restricted to the B0 → ρ±π∓ amplitudes, one has

A+−
′ = µa+−e−iδ̂/2 ,

A−+
′ = µa−+e+iδ̂/2 ,

(q/p)A+−
′ = µa+−e+i(2α+−

eff +δ̂/2) ,

(q/p)A−+
′ = µa−+e+i(2α−+

eff −δ̂/2) ,

where µ (overall scale) and the a+−, . . . , are real numbers and where we have rotated the amplitudes by the (arbitrary) global
phase Aij

′ = Aijei(arg[A+−∗]−δ̂/2).
60 In the absence of penguin contributions, the eight solutions for α and δ̂ satisfying (166) and (167) read [254]

α → π/4 − δ̂/2 , π/2 + α , 3π/4 − δ̂/2 , π/4 + δ̂/2 , π/2 − α , 3π/4 + δ̂/2 , π − α

δ̂ → π/2 − 2α , π + δ̂ , 3π/2 − 2α , −π/2 + 2α , −δ̂ , −3π/2 + 2α , π − δ̂
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Table 11. Compilation of results (from data up to Winter 2004) on B → ρπ branching fractions (in units of 10−6) and
CP asymmetries as well as dilution parameters. Limits are quoted at 90% confidence level (CL). Also given are the branching
fractions and direct CP asymmetries for the modes B0 → K∗+π−, B0 → ρ−K+, B+ → K∗0π+ and B+ → ρ+K0 related to ρπ
via SU(3) flavor symmetry

Obs. BABAR Belle CLEO Average

B±∓
ρπ 22.6 ± 1.8 ± 2.2 [247] 29.1+5.0

−4.9 ± 4.0 [255] 27.6+8.4
−7.4 ± 4.2 [256] 24.0 ± 2.5

Aρπ −0.114 ± 0.062 ± 0.027 [247] – – −0.114 ± 0.067

Sρπ −0.13 ± 0.18 ± 0.04 [247] – – −0.13 ± 0.18

∆Sρπ 0.33 ± 0.18 ± 0.03 [247] – – 0.33 ± 0.18

Cρπ 0.35 ± 0.13 ± 0.05 [247] – – 0.35 ± 0.14

∆Cρπ 0.20 ± 0.13 ± 0.05 [247] – – 0.20 ± 0.14

A+−
ρπ −0.18 ± 0.13 ± 0.05 – – −0.18 ± 0.14

A−+
ρπ −0.52+0.17

−0.19 ± 0.07 – – −0.52+0.18
−0.20

B+0
ρπ 11.0 ± 1.9 ± 1.9 [257,258] 13.2 ± 2.3+1.4

−1.9 [259] <43 [256] 12.0 ± 2.0

A+0
ρπ 0.23 ± 0.16 ± 0.06 [257,258] 0.06 ± 0.19±+0.04

−0.06 [259] – 0.16 ± 0.13

B0+
ρπ 9.3 ± 1.0 ± 0.8 [257,258] 8.0+2.3

−2.0 ± 0.7 [255] 10.4+3.3
−3.4 ± 2.1 [256] 9.1 ± 1.1

A0+
ρπ −0.17 ± 0.11 ± 0.02 [257,258] – – −0.17 ± 0.11

B00
ρπ 0.9 ± 0.7 ± 0.5(< 2.9) [257,258] 5.1 ± 1.6 ± 0.9 [260] <5.5 [256] 1.7 ± 0.8

C00
ρπ – – – –

S00
ρπ – – – –

B−+
ρK 7.3+1.3

−1.2 ± 1.3 [247] 15.1+3.4
−3.3

+2.4
−2.6 [261] 16.0+7.6

−6.4 ± 2.8 [256] 9.0 ± 1.6

A−+
ρK 0.18 ± 0.12 ± 0.08 [247] 0.22+0.22

−0.23 ± 0.02 [261] – 0.19 ± 0.12

B+−
K∗π – 14.8+4.6

−4.4
+2.8
−1.3 [261] 16+6

−5 ± 2 [262] 15.3+4.1
−3.5

A+−
K∗π – – 0.26+0.33

−0.34
+0.10
−0.08 [262] 0.26 ± 0.34

B+0
ρK – – <48 [263] <48

B0+
K∗π 15.5+1.8

−1.5 ± 4.0 [264] 8.5+0.9
−1.1 ± 0.9 [265] 7.6+3.5

−3.0 ± 1.6 [256] 9.0+1.3
−1.2

B0 → K∗+π− and B0 → ρ−K+, which are the SU(3) partners of the decays B0 → ρ+π− and B0 → ρ−π+, respectively.
There is some disagreement on possible evidence for the decay B0 → ρ0π0, which has not been seen by BABAR whereas
Belle finds a large central value for the branching fraction that may indicate a large color-suppressed tree amplitude
or significant penguin contributions.

4.2.1 Direct CP violation

The direct CP asymmetries A+−
ρπ and A−+

ρπ (see Table 11) have been computed from (161) and (162), using the
linear correlation coefficients given in Table 12. We find a linear correlation coefficient between A+−

ρπ and A−+
ρπ of

0.51. Confidence levels in the (A+−
ρπ ,A−+

ρπ ) plane are shown in the left hand plot of Fig. 42. The BABAR experiment
finds some indication for direct CP violation (approximately 2.5 standard deviations including systematics) mainly
in the modes involving the A−+ and A+− decay amplitudes. This result is rather unexpected since, if confirmed, it
would require sizable penguin contributions to these amplitudes, with a hierarchy opposite to the näıve factorization
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Table 12. Correlation coefficients (in %) between the
parameters in the time-dependent fit to B0 → ρ±π∓

decays as measured by BABAR [247]. Note that the cor-
relations between events yields and the CP parameters
are taken from the branching fraction analysis [247]

Aρπ Cρπ ∆Cρπ Sρπ ∆Sρπ Nρπ

Aρπ 100 −7.6 −6.7 −3.1 1.5 3.9
Cρπ 100 13.9 −7.7 −10.0 −7.4
∆Cρπ - 100 −9.5 −7.7 −6.8
Sρπ - - 100 22.9 1.2
∆Sρπ - - - 100 −3.0
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Fig. 42. Confidence level in the A+−
ρπ versus A−+

ρπ (left plot) and B+−
ρπ versus B−+

ρπ (right plot) planes. Shown are the 1σ (dark
shaded), 2σ (medium shaded) and the 3σ (light shaded) regions. The dashed line in the right hand plot approximately indicates
vanishing dilution (∆Cρπ = 0, neglecting AρπCρπ 	= 0)

expectation [266]
P−+ � P+− <∼ P+−

ππ . (171)

QCD factorization predicts potentially large corrections to the above hierarchy [135]; on the other hand, because the
strong phases are suppressed, direct CP violation in B0 → ρ±π∓ is expected to remain below 10%.

4.2.2 Charge-flavor specific branching fractions

The yields and CP -violation results are expressed in the basis defined in (159), (160) and (168). Since it is com-
plete, we can transform it to any other complete basis, e.g., the branching fractions of the four individual tag-charge
contributions. The individual (i.e., not B-flavor-averaged) branching fractions

Bρ+π− = B(B0 → ρ+π−) , Bρ−π+ = B(B0 → ρ−π+) ,

Bρ+π− = B(B
0 → ρ+π−) , Bρ−π+ = B(B

0 → ρ−π+) ,
(172)

are obtained via

BρQπ−Q(f,Q) =
1
2

(1 +QAρπ) (1 + f · (Cρπ +Q∆Cρπ)) B±∓
ρπ , (173)
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with the B0 flavors f(B0) = 1, f(B0) = −1, and the ρ charges Q(ρ±) = ±1. Adding statistical and systematic errors
in quadrature, we find (in units of 10−6):

Bρ+π− = 16.5+3.1
−2.8 , Bρ−π+ = 15.4+3.2

−2.9 ,

Bρ+π− = 4.8+2.6
−2.3 , Bρ−π+ = 11.4+2.8

−2.6 ,
(174)

and the correlation coefficients

Bρ−π+ Bρ+π− Bρ−π+

Bρ+π− −0.17 −0.47 −0.14

Bρ−π+ 1 −0.08 −0.40

Bρ+π− − 1 −0.06

(175)

One notices a significant lack of B0 → ρ+π− decays in the results (174). We can infer from these numbers the
B-flavor-averaged branching fractions (in units of 10−6)

B+−
ρπ ≡ 1

2
(Bρ+π− + Bρ−π+

)
=

1
2

(1 +∆Cρπ + AρπCρπ) B±∓
ρπ = 13.9+2.2

−2.1 ,

B−+
ρπ ≡ 1

2
(Bρ−π+ + Bρ+π−

)
=

1
2

(1 −∆Cρπ − AρπCρπ) B±∓
ρπ = 10.1+2.1

−1.9 , (176)

with a linear correlation coefficient of −0.28 between B+−
ρπ and B−+

ρπ . The CLs of the rates (176) are depicted in
the right hand plot of Fig. 42. The branching fractions B+−

ρπ and B−+
ρπ correspond to transitions where the ρ meson

is emitted by the W boson or originates from the spectator interaction, respectively. Simple form factor arguments
predict that B+−

ρπ should be larger than B−+
ρπ , which is reproduced by experiment.

Also given in Table 11 are the ρπ flavor partners. Since ρ0π0 is a CP eigenstate (in the two-body decay approxi-
mation), its sine and cosine coefficients, S00

ρπ, C00
ρπ, can be measured in a time-dependent analysis, provided that the

experimental sensitivity is sufficient. The other ρπ modes are charged so that they provide two observables, one of
which describes CP violation. The decays B0 → K+(∗)h− are self-tagging so that they also provide two observables.

4.3 Penguins

The experimental results on K∗π and Kρ modes summarized in Table 11 indicate that large penguin contributions
may be present in the SU(3)-related B0 → ρ±π∓ decay amplitudes. On the other hand, within QCD Factorization,
the penguin-to-tree ratio for both charge combinations is predicted to be significantly smaller (a factor of three) than
for B0 → π+π− decays [135].

4.3.1 Zero-penguin case

As an exercise, we assume here that the penguin amplitudes P+− and P−+ are zero so that α+−
eff = α−+

eff = α (cf. (166)
and 167). The compatibility of a theory without penguins with the B0 → ρ±π∓ data is marginal. We find χ2 = 8.6
for two degrees of freedom which corresponds to a CL of 0.014 (2.5σ - which is equal to the significance of direct CP
violation).

Figure 43 shows the constraint on α obtained in this simplified setup. The eightfold ambiguity within [0, π] arises
due to the unknown strong phase δ̂. Although vanishing penguin amplitudes are not a likely scenario, it allows us
to assess the statistical power of the present data: if all strong phases were known, α could be determined with an
accuracy of 5.4◦ per solution. Further setting δ̂ = 0 leads to a twofold ambiguity, one of which is in agreement with
the standard CKM fit.

4.3.2 Constraining the penguins

In analogy to the B0 → π+π− case, we can constrain the penguin contributions by inserting the value of α from the
standard CKM fit. Whereas the information from the other charges (via isospin) is used there, we restrict the analysis
to B0 → ρ±π∓ here. Figure 44 gives the CLs obtained in the P+−/T+− complex plane (left hand plot) as well as the
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Fig. 44. Confidence levels in the complex planes |Rt/Ru|(P+−/T+−) (left) and |Rt/Ru|(P−+/T−+) (right), using α from the
standard CKM fit as input. Dark, medium and light shaded areas have CL > 0.90, 0.32 and 0.05, respectively. Shown by the
hatched areas are the corresponding CL > 0.05 regions obtained when using in addition SU(3) flavor symmetry (Scenario (II),
see Sect. 4.5)

P−+/T−+ complex plane (right hand plot). Due to the negative values of the direct CP -violating asymmetries (161)
(cf. Table 11), positive strong phases are preferred for both ratios. Since the decays governed by the A−+ and A+−
amplitudes (for which the ρ meson contains the spectator quark) exhibit larger direct CPV, more sizable penguin-to-
tree ratios are required here. The characteristic hyperbolic shapes of the constraints is due to the fact that direct CP
violation is the product of penguin-to-tree ratio and strong phase difference. Also shown in Fig. 44 are the CL > 0.05
regions obtained when using SU(3) flavor symmetry and neglecting OZI-suppressed annihilation terms, which due to
the CKM-favored penguin amplitudes provides improved bounds (see the discussion in Sect. 4.5).

4.4 SU(2) symmetry

Similarly to the Gronau-London analysis in B → ππ and longitudinally polarized B → ρρ decays [141], the full isospin
analysis of B → ρπ decays allows one to constrain the angle α up to discrete ambiguities [267]. However, instead of a
triangular isospin relation, a pentagon has to be determined in the complex plane, which reduces the sensitivity to α.

4.4.1 Isospin analysis

The SU(2) flavor decomposition of the neutral and charged B → ρπ amplitudes is given, e.g., in [267,201]. Here we
recall only the relevant relations, which complete (158)

2A00 ≡ 2A(B0 → ρ0π0) = VudV
∗
ubT

00
C − VtdV

∗
tb

(
P+− + P−+) ,
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√
2A0+ ≡

√
2A(B+ → ρ0π+) = VudV

∗
ubT

0+ − VtdV
∗
tb

(
P+− − P−+) , (177)

√
2A+0 ≡

√
2A(B+ → ρ+π0) = VudV

∗
ub

(
T+− + T−+ + T 00

C − T 0+)
+ VtdV

∗
tb

(
P+− − P−+) ,

and equivalently for the CP -conjugated amplitudes. The amplitudes satisfy the pentagonal relations
√

2
(
A+0 +A0+) = 2A00 +A+− +A−+ ,√

2
(
A+0 +A0+) = 2A00 +A+− +A−+ . (178)

As in the case of B → ππ, the color-suppressed mode B0 → ρ0π0 constrains the (sum of the) penguin contributions to
B0 → ρ±π∓. The above isospin relations take advantage of the fact that QCD penguins can only mediate ∆I = 1/2
transitions in the SU(2) limit. Electroweak penguins, that we neglect here (see Footnote 57 in Sect. VI.4), can have
∆I = 3/2 and would thus lead to additional terms proportional to VtdV

∗
tb.

Information counting results in 12 unknowns (6 complex amplitudes and the weak phase α = π− β − γ minus one
arbitrary global phase), and 13 observables for the complete SU(2) analysis. The isospin analysis constrains the weak
phase α up to discrete ambiguities, which however are not necessarily degenerate thanks to the fact that the system is
over-determined (all observables are experimentally accessible). This is similar to the B → ρρ system (cf. Sect. VI.5).

4.4.2 SU(2) bounds

Using the SU(2) relations and the CP -averaged branching fractions, one can derive simple bounds on the deviation
from α induced by the penguin contributions [143,268]

|α− α±
eff | ≤ 1

2
arccos


 1√

1 − A±
ρπ

2

(
1 − 4

B00
ρπ

B±
ρπ

) , (179)

where we use the CP -averaged quantities

2α±
eff ≡ arg

[
q

p

A+− +A−+

A+− +A−+

]
, (180)

A±
ρπ ≡ |A+− +A−+|2 − |A−+ +A+−|2

|A+− +A−+|2 + |A−+ +A+−|2 , (181)

B±
ρπ ∝ τB0

4
(|A+− +A−+|2 + |A−+ +A+−|2) . (182)

The latter two cannot be experimentally determined in a quasi-two-body analysis since they involve the relative phases
arg[κ−+λ+−∗] and arg[κ+−λ+−∗], which depend on the interference between the two charge states ρ+π− and ρ−π+ in
the Dalitz plot. Indirect isospin constraints on B±

ρπ and A±
ρπ using the current results (Table 11) are insignificant [252].

As a consequence, no useful constraint on |α− α±
eff | is obtained from the bound (179).

The presently available experimental information is insufficient to obtain a meaningful constraint on α. We thus
attempt to give an outlook to future integrated luminosities accumulated at the B factories.

4.4.3 Prospects for the full isospin analysis

To perform an educated study of the full isospin analysis, we assume α = 94◦ and a set of generating decay amplitudes
chosen (arbitrarily) to approximately reproduce the experimental results given in Table 11. We obtain from these
amplitudes the inputs

B±∓
ρπ = 22.8 ± 0.82 [0.26] , Aρπ = −0.12 ± 0.025 [0.13] , C00

ρπ = 0.66 ± 0.162 [0.056] ,

B00
ρπ = 1.2 ± 0.19 [0.06] , Cρπ = 0.41 ± 0.052 [0.029] , S00

ρπ = −0.69 ± 0.222 [0.072] ,

B+0
ρπ = 8.6 ± 0.76 [0.24] , ∆Cρπ = 0.20 ± 0.052 [0.029] , A+0

ρπ = −0.29 ± 0.051 [0.028] ,

B0+
ρπ = 16.5 ± 0.40 [0.13] , Sρπ = −0.12 ± 0.065 [0.026] , A0+

ρπ = −0.16 ± 0.032 [0.013] ,

∆Sρπ = 0.30 ± 0.065 [0.016] ,
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Fig. 45. Left : constraint on α using the full B → ρπ isospin analysis and assuming projections into future integrated luminosities
of 1 ab−1 and 10 ab−1. The assumptions made on the generating amplitudes are given in the text. The arrow indicates the true
value of α used for the generation of the toy observables. The hatched area shows the constraint obtained from the present
standard CKM fit. Right : same as left hand plot but with a ten times smaller B00

ρπ

where the errors are extrapolated to integrated luminosities of 1 ab−1 [10 ab−1]. The statistical errors are assumed to
scale with the inverse of the square-root of the integrated luminosity. The systematic uncertainties are dominated by
the limited knowledge of the backgrounds arising from other B decays. Because this knowledge, however, improves
when more data become available, the related uncertainty is assumed to decrease like the statistical errors. We
neglect possible irreducible systematics from tracking and neutral reconstruction efficiencies or other effects. For the
CP parameters, we assume the systematics decrease with the square root of the luminosity up to 1 ab−1 due to an
improved knowledge of the CP content of the primary B-background modes, but then do not decrease any further
since unknown effects, like CP violation on the tag side, become dominant.

We derive the constraints on α shown in the left hand plot of Fig. 45. A wide range of solutions exists besides the
true value α, indicated by the arrow. The right hand plot of Fig. 45 shows the CLs obtained for α when the branching
fraction of B0 → ρ0π0 is below the experimental sensitivity (B00

ρπ = 0.1 × 10−6). The constraint improves compared to
the previous case.

The conclusions drawn from this exercise are similar to what has been observed in B0 → π+π− decays: unless the
branching fraction B00

ρπ is very small (even smaller than expected from the color-suppression mechanism), very large
statistics is needed to significantly constrain α from ρπ data alone using the quasi-two-body isospin analysis. It is
effectively beyond the reach of the first generation B factories.

4.5 SU(3) flavor symmetry

Similarly to the studies in B0 → hh′ decays, one can use SU(3) flavor symmetry and dynamical hypotheses to obtain
additional information on the penguin amplitudes contributing to B0 → ρ±π∓.

4.5.1 Estimating |P+−| and |P−+| from B0 → ρ−K+ and B0 → K∗+π−

As proposed in [143], the penguin amplitudes in B0 → ρ±π∓ can be more effectively constrained with the use of the
corresponding charge states in b → uūs transitions, namely the decays B0 → K∗+π− and B0 → ρ−K+ (Scenario (II))
for which the amplitudes read

A+−
K∗π ≡ A(B0 → K∗+π−) = VusV

∗
ubT

+−
K∗π + VtsV

∗
tbP

+−
K∗π ,

A−+
ρK ≡ A(B0 → ρ−K+) = VusV

∗
ubT

−+
ρK + VtsV

∗
tbP

−+
ρK .

(183)

Under the assumption of SU(3) flavor symmetry, and neglecting OZI-suppressed penguin annihilation diagrams (see
right hand diagram in Fig. 21), which contribute to B → ρπ but not to B → ρK,K∗π, the penguin amplitudes in
(183) and those entering A+− (A−+) are equal (Scenario (II)):

P+− = P+−
K∗π , P−+ = P−+

ρK . (184)
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Fig. 46. Left : Confidence levels for the SU(3) bounds (185) (dashed line) and (186) (solid line). The arrows indicate the
CL = 0.05 crossing values given in (187). Right : Lower bounds on the branching fractions B+−

K∗π (dashed line) and B−+
ρK (solid

line) obtained with the use of SU(3) symmetry and inserting α from the standard CKM fit. The arrows indicate the corresponding
experimental values (same line types)

This leads to the bounds [143]

|α− α+−
eff | ≤ 1

2
arccos


 1√

1 − A+−
ρπ

2

(
1 − 2λ2 B+−

K∗π

B+−
ρπ

) , (185)

|α− α−+
eff | ≤ 1

2
arccos


 1√

1 − A−+
ρπ

2

(
1 − 2λ2 B−+

ρK

B−+
ρπ

) , (186)

where λ is the Wolfenstein parameter. Compared to the bound (179), the above SU(3) bounds benefit from the relative
CKM enhancement (suppression) of the penguin (tree) amplitudes in the strange modes with respect to the b → u
transitions. The left-hand plot of Fig. 46 shows the CLs for |α − α+−

eff | and |α − α−+
eff | obtained with the use of the

results for the branching fractions given in Table 11. At 95% CL, we find61

|α− α+−
eff | < 17.6◦ , |α− α−+

eff | < 12.6◦ , (187)

which are more restrictive than the corresponding bounds obtained in the ππ system (see Sect. VI.1.4)
Owing to the fact that non-zero direct CPV requires sizable penguin contributions, we can reverse the procedure

and infer lower limits on B+−
K∗π and B−+

ρK , using SU(3) and inserting α from the standard CKM fit. The CLs obtained
for both branching fractions are shown in the right hand plot of Fig. 46. The arrows indicate the corresponding
measurements. As expected, the relatively large CP asymmetry A−+

ρπ requires an increased B−+
ρK , while no useful lower

bound is obtained for B+−
K∗π. Although compatible within the rather large experimental errors (CL = 0.46), one can

conclude from this observation that if the SU(3) picture holds within the SM, improved statistics is expected to give
a lower value of |A−+

ρπ | than the current one, since B−+
ρK is already known to good precision. Following the same

line, we have attempted to obtain a lower bound on the branching fraction B00
ρπ, which is however insignificant at

present [252]. In turn, we have attempted in Fig. 47 to use the CP -conserving branching fractions B+−
ρπ and B−+

ρπ as
the only experimental input (or equivalently B±∓

ρπ , ∆Cρπ and the CP -conserving product Cρπ · Aρπ) as well as their
SU(3) partners B+−

K∗π and B−+
ρK , to infer bounds62 on A+−

ρπ and A−+
ρπ . Since branching fractions are not sensitive to the

sign of direct CPV, the figure is symmetric around the zero axes. We determine the allowed domains (CL > 0.05)
61 Note that the numerical analysis performed with CKMfitter does not explicitly involve (185) and (186), since the full
amplitude parameterizations are implemented. Fitting all experimental results to these amplitudes, and using the SU(3) con-
straints (184), automatically reproduces the analytical bounds.
62 The analytical SU(3) bounds on the direct CP asymmetries read

A+−
ρπ <

√
1 −

(
1 − 2λ2 B+−

K∗π

B+−
ρπ

)2

, A−+
ρπ <

√√√√1 −
(

1 − 2λ2
B−+

ρK

B−+
ρπ

)2

.
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Fig. 48. Left : confidence levels obtained for α with the use of SU(3) flavor symmetry within Scenario (II). The light shaded
curve gives the nominal constraint, while the dark shaded one corresponds to the solutions one would obtain if the relative
strong phase δ̂ were known and equal to zero. The hatched area shows the constraint obtained from the CKM fit using the
standard constraints (cf. Part III). Right : correlation between α and δ̂. The shaded areas indicate CL = 0.32 domains and the
solid lines show the CL = 0.05 regions. The periodicity is ∆α = 45◦ and ∆δ̂ = 90◦. The hatched area depicts the CL ≤ 0.05
allowed region for α obtained from the CKM fit using the standard constraints (cf. Part III)

|A+−
ρπ | < 0.64 , |A−+

ρπ | < 0.59 . (188)

Using the results given in Table 11 and the relations (184), we can set CLs for α. We obtain six ambiguous solutions
shown by the light shaded region in the left hand plot of Fig. 48. The widths of the plateaus represent the uncertainties
|α−α+−(−+)

eff | determined by the bounds (185) and (186). The bounds on |α−α+−(−+)
eff | are not good enough to resolve

all the eight ambiguities, which are partially merged. The χ2
min = 0.3 for the best fit is satisfactory. Fixing arbitrarily

the penguin amplitudes to zero results in the significantly worse χ2
min = 8.8. Also shown in the figure is the solution

obtained when fixing the relative strong phase δ̂ to zero. Good agreement with the standard CKM fit is observed.
It is interesting to correlate α with the relative strong phase δ̂ between A−+ and A+− (cf. (166)). The corresponding

CLs are shown in the right hand plot of Fig. 48. We observe a structure of distinctive islands, and, when using the SM
constraint (cf. Table 2) on α, we conclude that values of δ̂ = 0, π are preferred, one of which (δ̂ = 0) is in conformity
with expectations from factorization. If δ̂ were given by theory or determined experimentally through a Dalitz plot
analysis [253], SU(3) symmetry would result in a useful constraint on α.
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4.5.2 Estimating |P+−| and |P−+| from B+ → ρ+K0 and B+ → K∗0π+

The magnitude of the penguin amplitudes |P+−| and |P−+| can be estimated from the branching fraction of the
penguin-dominated decays B+ → ρ+K0 and B+ → K∗0π+ (Scenario (III)). Neglecting the doubly CKM-suppressed
u penguins and annihilation diagrams, the transition amplitudes for these modes are given by

A+0
K ≡ A(B+ → ρ+K0) = V ∗

tbVtsP
+0
ρK ,

A0+
K ≡ A(B+ → K∗0π+) = V ∗

tbVtsP
0+
K∗π . (189)

Correspondingly to the relation (126) and within the same hypotheses, one has

|P+−| =
1√
rτ

fρ

fK∗

1
R+− |P 0+

K∗π|,

|P−+| =
1√
rτ

fπ

fK

1
R−+ |P+0

ρK |, (190)

where the correction factors R+− and R−+ are both fixed to R = 0.95 ± 0.23 (for simplicity we choose the same value
as in (126)), but they vary independently in the fit within their theoretical errors. For the ρ(770) and the K∗(892)
decay constants we use fρ = (209 ± 1) MeV and fK∗ = (218 ± 4) MeV [135], respectively.

The branching fractions of these modes are given in Table 11. Figure 49 shows the constraints obtained on α for
Scenario (III). Since only an upper limit exists for B+ → ρ+K0, for illustration purpose we assign the value (and
error) of B(B0 → ρ−K+) to that branching fraction. Note that the number of peaks doubles from eight to sixteen
when using B+ → ρ+K0 since it determines the magnitude of the penguin amplitude rather than an upper limit only
(as does Scenario (II)). We draw the following conclusions from this exercise:

– the constraint on α will be improved when the measurement of the branching ratio to ρ+K0 is available.
– the uncertainties on the correction factors R+− and R−+ do not much degrade the constraints on α, i.e., theoretical

uncertainties appear to be subdominant for Scenario (III).
– in all SU(3) scenarios, a precise determination of α would be obtained if the relative strong phase δ̂ were known

(for example from a Dalitz plot analysis [253] or from theory [135]), in which case the rôle of the errors on the
ratios R± may become important. However, without this additional input, the constraints obtained by the different
approaches are insignificant.
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Fig. 49. Confidence levels obtained for α with the use of SU(3) flavor symmetry. Left : Scenario (II) (light shaded, same as in
left hand plot of Fig. 48), Scenario (III) but only using B+ → K∗0π+ to constrain |P+−| (medium shaded), and Scenario (III)
as previous case and assuming in addition that the relative strong phase δ̂ is zero (dark shaded). Right : Scenario (II) (light
shaded, same as left plot); the medium and medium-dark shaded curves correspond to Scenario (III) with SU(3) constraints
on both penguins amplitudes from B+ → K∗0π+ and B+ → ρ+K0, where we assume for that latter mode (which has not yet
been seen) that the branching fraction is equal to the one of B0 → ρ−K+. Medium shaded is for R that varies freely within
its uncertainties, while medium-dark shaded is for fixed R. The dark shaded curve gives the result of the previous case when
assuming δ̂ = 0. In both plots, the hatched area indicates the constraint obtained from the standard CKM fit
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5 Analysis of B → ρρ decays

The isospin analysis of B → ρρ decays leads to the extraction of α in a way similar to B → ππ decays [267]. The specific
interest of these channels lies in the potentially small penguin contribution, which is theoretically expected [266] and
indirectly confirmed by the smallness of the experimental upper bound on the B0 → ρ0ρ0 branching fraction [147] with
respect to the branching fractions of B0 → ρ+ρ− and B+ → ρ+ρ0 [147,148,145,62]. In addition, and more importantly
for a precision measurement, both direct and mixing-induced CP -violating asymmetries of the color-suppressed decay
B0 → ρ0ρ0 are experimentally accessible.

The analysis is complicated by the presence of three helicity states for the two vector mesons. One corresponds to
longitudinal polarization and is CP -even. Two helicity states are transversely polarized and are admixtures of CP -even
and CP -odd amplitudes. In the transversity frame [269], one amplitude accounts for parallel transverse polarization
and the other for perpendicular transverse polarization of the vector mesons, with respect to the transversity axis: the
first is CP -even and the second CP -odd. Hence the perpendicular polarization (if not identified or zero) dilutes the
CP measurement. By virtue of the helicity suppression, the fraction of transversely polarized ρ mesons is expected to
be of the order of (ΛQCD/mB)2 ∼ 2% in the factorization approximation [135,270] supplemented by the symmetry
relations between heavy-to-light form factors in the asymptotic limit [271]. This has been confirmed by experiment in
B+ → ρ+ρ0 [147,148] and B0 → ρ+ρ− [145] decays that are both found to be dominantly longitudinally polarized.
As a consequence, one is allowed to restrict the SU(2) analysis described in Sect. VI.1.2.1, without significant loss
of sensitivity, to the longitudinally polarized states of the B → ρρ system. This also applies to the treatment of
electroweak penguins.

The isospin analysis relies on the separation of the tree-level amplitudes (I = 0 and I = 2) from the penguin-type
amplitudes (I = 0), since Bose statistics ensures that no odd isospin amplitude is present in two identical meson final
states. It has been pointed out in [152] that due to the finite width of the ρ meson, I = 1 contributions can occur
in B → ρρ decays. Although no prediction is made, one may expect these to be of the order of (Γρ/mρ)2 ∼ 4%. In
the following, we first neglect I = 1 contributions, and later present a preliminary study including these effects in
Sect. VI.5.4. Also neglected is isospin violation due to the strong interaction as well as effects from the interference
with the radial excitations of the ρ, with other ππ resonances and with a non-resonant component; in the future these
effects may be studied by the experiments since they depend on the specific analysis requirements.

5.1 Theoretical framework and experimental input

Due to the lack of experimental information, an SU(3) analysis is not feasible at present (the branching fractions of
the SU(3) partners B0 → K∗+ρ− and the penguin-dominated B+ → K∗0ρ+ have not been published yet). We hence
restrict the numerical analysis to isospin symmetry corresponding to Scenario (I) (cf. Sect. VI.1.2), which is however
significantly more fruitful than for the B → ππ system.

The experimental results used here are collected in Sect. III.2.11. The main ingredient is the measurement of
sin 2αeff from the time-dependent CP and polarization analysis of B0 → ρ+ρ− decays performed by BABAR [149,145].

5.2 Numerical results

We present the CLs obtained from the isospin analysis of B → ρρ decays as a function of α (Fig. 50) and in the (ρ, η)
plane (left hand plot of Fig. 52). On both figures, the standard CKM fit (excluding the B → ρρ data) is superimposed
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Fig. 50. Confidence levels for α from the SU(2) analysis of the B →
ρρ system (light shaded). The dark-shaded function is obtained by
setting the error on S+−

ρρ,L to zero. It hence represents the uncertainty
due to the penguin contribution (∆α). Also shown is the prediction
from the standard CKM fit (hatched area), which includes the world
average for sin 2β but ignores the B → ρρ data
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Fig. 51. Confidence levels from the SU(2) analysis of the B → ρρ system. Dark, medium and light shaded areas have CL > 0.90,
0.32, 0.05, respectively. Left : constraints in the (ρ, η) plane. Overlaid is the prediction from the standard CKM fit, which includes
the world average for sin 2β but not the B → ρρ data. Right : constraints in the (S+−

ρρ,L, C
+−
ρρ,L) plane, with the input values for

ρ and η taken from the standard CKM fit. The circle indicates the physical limit S+−
ρρ,L

2 + C+−
ρρ,L

2 = 1, and the hatched area
represents the CL of the BABAR measurement for which the presence of the physical boundary has been properly taken into
account (see Sect. II.2.2.3). The contours correspond to 1σ and 2σ, respectively
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Fig. 52. Constraints on the penguin-to-tree ratio (Rt/Ru)|P+−/T+−| and the relative strong phase arg[P+−T+−∗] (left), and
on the color-suppressed to color-allowed ratio |T 00

C /T+−| and the relative strong phase arg[T 00
C T+−∗] (right), obtained from

the SU(2) analysis and using the result from the standard CKM fit as input. Dark, light and very light shaded areas have
CL > 0.90, 0.32, 0.05, respectively

exhibiting agreement with the B → ρρ constraints and, remarkably, a comparable precision. The p-value of the
measurements within the isospin framework (and the result from the standard CKM fit) is found to be 70%. The
hatched curve in Fig. 50 is obtained by setting the error on S+−

ρρ, L to zero, thus reflecting the present uncertainty due
to the penguin pollution (given the measurement of C+−

ρρ, L and of the branching ratios). From this, the 90% CL bound
on ∆α is found to be

−20◦ < ∆α < 18◦ . (191)

Converting this into a result for α and taking the solution that is in agreement with the standard CKM fit, we find

α =
(
94 ± 12

[+28
−25

] ± 13 [19]
)◦

,
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Fig. 53. Confidence levels for B(B+ → ρ+ρ0) versus B(B0 → ρ+ρ−) (left) and B(B+ → ρ+ρ0) versus B(B0 → ρ0ρ0) (right),
obtained from the isospin analysis ignoring the branching fractions that are determined, and with the use of α from the standard
CKM fit. The hatched areas indicate the 1σ bands of the corresponding measurements

where the first errors are experimental and the second due to the penguin uncertainty. For CL > 10% the overall
uncertainty on α amounts to 19◦. Errors in brackets above are given at CL > 5% (2σ). The penguin error contains a
systematic uncertainty of 0.2◦ (interpreted as a theory error by Rfit) from the treatment of the electroweak penguins
(see (121) in Sect. VI.1.2.1). The full shift on α introduced by PEW amounts to −2.1◦. Taking this into account our
result agrees with the BABAR result [149]. The slightly larger experimental error here is explained by the difference
in the central value of α.

Since the CP -violating asymmetries in B0 → ρ0ρ0 have not been measured, the isospin analysis is incomplete and
one expects plateaus in the CL as a function of α. The width of these plateaus is driven by the GLSS bound (113).
However, peaks are observed in Fig. 50, which is a consequence of the relative values of the three branching fractions:
the tight upper limit on B(B0 → ρ0ρ0) implies that the sum of the color-suppressed and the penguin amplitudes is
small so that B(B+ → ρ+ρ0) ∼ 0.5 × B(B0 → ρ+ρ−), which is not confirmed by the central values of the measure-
ments (B(B+ → ρ+ρ0)/B(B0 → ρ+ρ−) = 0.88+0.21

−0.15). This “incompatibility” (which is well covered by the present
experimental errors) lifts the degeneracy in the (infinite) solution space of α. See Fig. 53 for representations of the
predictions obtained for B(B+ → ρ+ρ0) versus B(B0 → ρ+ρ−) and B(B+ → ρ+ρ0) versus B(B0 → ρ0ρ0) from the
isospin analysis combined with the standard CKM fit. The hatched areas give the 1σ bands of the present experimental
averages.

Using the standard CKM fit as input (excluding B → ρρ therein) and the B → ρρ branching fraction measurements,
one can obtain predictions for S+−

ρρ,L and C+−
ρρ,L by means of the isospin analysis. The corresponding CLs are shown in

the right hand plot of Fig. 51 together with the measurement from BABAR. Due to the favorable bound on ∆α (191),
the SU(2) prediction turns out to be meaningful, in sharp contrast to the corresponding ππ case (cf. Fig. 25).

Constraints on amplitude ratios

By inserting α from the standard CKM fit we derive constraints on the complex amplitude ratios (Rt/Ru)P+−/T+−
and T 00

C /T+−. Their CLs in polar coordinates are given in Fig. 52. The smallness of the penguin-to-tree ratio becomes
manifest on the left hand plot (although rather large values are still possible). The magnitude of the color-suppressed-
to-color-allowed ratio (right hand plot) is found to be of the order of 0.2, in agreement with the näıve expectation.
Comparing these plots with Figs. 26 and 27 in the ππ system seems to suggest a non-trivial dynamical mechanism,
which drives the behavior of the penguin and color-suppressed amplitudes differently with respect to the leading tree
in V V and PP modes. See Sect. VI.6 for further discussion of the amplitude ratios.
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5.3 Prospects for the isospin analysis

As for ππ and ρπ, we attempt extrapolations of the isospin analysis to future integrated luminosities of 500 fb−1 and
1 ab−1. Note that the results strongly depend on the underlying physics, the knowledge of which is insufficient up to
now. We understand the scenarios studied here are likely to be optimistic.

In the first scenario considered, with the exception of B(B0 → ρ0ρ0), all measurements are extrapolated with the use
of the present central values. The branching fraction of B0 → ρ0ρ0 is increased to 1.3×10−6 to ensure the compatibility
of all observables with the isospin relations (107). It is assumed to be dominated by longitudinal polarization with
a longitudinal fraction of f00

L = 0.976 (simple arithmetic average of f+−
L and f+0

L ). We further assume that both
time-dependent CP asymmetries in B0 → ρ0ρ0 are measured, and set them to S00

ρρ,L = 0.05 and C00
ρρ,L = 0.70, the

preferred solutions of the standard CKM fit. The statistical and systematic uncertainties are extrapolated according
to the luminosity increase. For B(B0 → ρ0ρ0), B(B+ → ρ+ρ0) and f+0

L , we further reduce the extrapolated errors by
a factor of 1.3 reflecting the improvement (at fixed statistics) in the most recent B0 → ρ+ρ− analysis with respect
to the previous one [146]. The errors for S00

ρρ,L, C00
ρρ,L and f00

L are estimated from S+−
ρρ,L, C+−

ρρ,L and f+−
L , respectively:

they are scaled to the expected number of B0 → ρ0ρ0 events (taking into account the different selection efficiencies),
except for the systematic uncertainties on S00

ρρ,L and C00
ρρ,L, which are roughly estimated from the present values on

S+−
ρρ, L and C+−

ρρ,L. We obtain the extrapolations

B+−
ρρ = 30.0 ± 1.6 [1.1] ± 2.0 [1.4] , f+−

L = 0.990 ± 0.012 [0.008] ± 0.014 [0.010] ,

B+0
ρρ = 26.4 ± 1.6 [1.1] ± 1.6 [1.2] , f+0

L = 0.962 ± 0.014 [0.010] ± 0.011 [0.008] ,

B00
ρρ = 1.30 ± 0.14 [0.10] ± 0.09 [0.06] , f00

L = 0.976 ± 0.030 [0.021] ± 0.035 [0.025] ,

S+−
ρρ,L = −0.19 ± 0.16 [0.11] ± 0.05 [0.04] , C+−

ρρ,L = −0.23 ± 0.11 [0.08] ± 0.07 [0.05] ,

S00
ρρ,L = 0.05 ± 0.39 [0.28] ± 0.08 [0.06] , C00

ρρ,L = 0.70 ± 0.28 [0.20] ± 0.10 [0.07] ,

where first errors given are statistical and second systematic. Errors outside [inside] the brackets are extrapolated to
500 fb−1 [1 ab−1] integrated luminosity.

The results of the isospin analyses corresponding to these inputs are shown in Fig. 54 (left hand plot). To illustrate
the impact of the S00

ρρ,L measurement, we also give the result at 500 fb−1 ignoring S00
ρρ,L in the fit (hatched function).

If neither S00
ρρ,L nor C00

ρρ,L were measured, a very similar constraint would be obtained as in the latter fit: only the tiny
double-bumps in the hatched curves reflect the impact of C00

ρρ,L. As for ππ, very large statistics would be needed to
resolve the discrete ambiguities when relying on C00

ρρ,L only. The main additional information on α is hence provided
by S00

ρρ,L, which is due to its linear dependence on sin 2α (see the analytical solutions of the isospin analysis derived
in Footnote 35 in Sect. VI.1.2.1). With this scenario, the (symmetrized) 1σ (resp. 2σ) uncertainty on α is expected
to be of the order of 8◦ at 500 fb−1 and 6◦ at 1 ab−1 (resp. 16◦ and 10◦), which is small enough so that the residual
SU(2)-breaking effects discussed below have to be taken into account.

In a second scenario, the central value of B00
ρρ is fixed to the present one (0.6 × 10−6) and the branching fraction

of the B+ → ρ+ρ0 mode is decreased to 17 × 10−6, which is the value preferred by the present isospin analysis when
using the standard CKM fit as input (see Fig. 53). The new set of extrapolations for the ρ+ρ0 and ρ0ρ0 modes are

B+0
ρρ = 17.0 ± 1.3 [0.9] ± 1.3 [1.0] , f+0

L = 0.962 ± 0.017 [0.012] ± 0.014 [0.010] ,

B00
ρρ = 0.60 ± 0.09 [0.07] ± 0.06 [0.04] , f00

L = 0.976 ± 0.044 [0.031] ± 0.051 [0.037] ,

S00
ρρ,L = 0.05 ± 0.57 [0.41] ± 0.12 [0.09] , C00

ρρ,L = 0.70 ± 0.41 [0.29] ± 0.15 [0.10] ,

where again errors outside [inside] the brackets are extrapolated to 500 fb−1 [1 ab−1] integrated luminosity. The con-
straints on α resulting from these extrapolations are shown in Fig. 54 (right hand plot). The (symmetrized) 1σ (resp.
2σ) errors on α obtained with this setup amount to 13◦ at 500 fb−1 and 7◦ at 1 ab−1 (resp. 19◦ and 16◦). This is
significantly worse than for the previous scenario, in which one benefits from an almost optimal bound on ∆α since
B00

ρρ ≈ B00
GLSS− = 1.25×10−6, while for the second scenario the lower bound B00

GLSS− = 0.20×10−6 is rather different63

from the central value of B00
ρρ. Furthermore, due to the small B00

ρρ the precision on S00
ρρ,L is insufficient to effectively

suppress the ambiguities.

63 The values for B00
GLSS− corresponding to the different scenarios are determined from (115), where we have used as inputs

the branching fractions of the longitudinally polarized ρ’s. Note that the upper bounds B00
GLSS+ correspond in both scenarios to

very large B00
ρρ that are excluded by experiment.
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Fig. 54. Confidence level for α from the SU(2) analysis of the B → ρρ system, extrapolated at integrated luminosities of
500 fb−1 (light shaded) and 1 ab−1 (dark shaded). The two scenarios defined in the text are shown: the left (right) hand plot
corresponds to a relatively large (small) value for B00

ρρ, each one compatible with a subset of the current measurements. To
illustrate the impact of the S00

ππ measurement, we also show the result at 500 fb−1 ignoring the latter input (hatched)

An important source of systematic uncertainty on the time-dependent CP -violating asymmetries is the CP violation
exhibited by the B-related background modes [145], that may be hard to measure in the near future. To study its
impact, we keep the size of this systematic error unchanged in the extrapolation, while all other systematic errors are
appropriately scaled with the increasing luminosity. Applying this procedure to all time-dependent CP asymmetries,
no significant deterioration of the accuracy on α is observed.

5.4 Breaking of the triangular relation in B → ρρ

Gardner [203] presents a study of isospin-breaking effects in B → ππ that come from the strong interaction, through
the π0–η–η′ mixing. These effects break the triangular relation (107) and entail a systematic error on the angle α.
The size of this error depends on the actual values of the non-leptonic matrix elements, and on the relative amount of
the I = 0 component in the π0 bound state, which could be of order 1–2%. In B → ρρ decays, besides a similar effect
due to the ρ–ω mixing, it is argued in [152] that a I = 1 ρρ state could be generated by the finite width of the ρ.
Although the latter effect does not break isospin symmetry in the sense that it does not vanish in the mu = md limit,
it can be parameterized the same way as above, through the introduction of an additional amplitude in the isospin
triangle (107).

Hence we model a possible breaking of the closure of the isospin relation by a contribution ∆A+0 to the A+0

amplitude given by √
2∆A+0 = VudV

∗
ub∆TT

+− + VtdV
∗
tb∆PP

+− . (192)

Note that for arbitrary values of the relative coefficients ∆T and ∆P , the above equation together with (95) and (106)
is the most general parameterization of B → ππ and B → ρρ decays within and beyond the Standard Model (see
Footnote 70 in Sect. VII.3). In this Section however, we assume that ∆T and ∆P are unknown within a magnitude of
up to (mρ/Γρ)2 ∼ 4% [152] and with arbitrary strong phases64. The effect on α is given in Fig. 55. The left hand plot
shows the present experimental situation (bound on B(B0 → ρ0ρ0)), where the solid line indicates the isospin analysis
where isospin-breaking contributions with the exception of electroweak penguins are neglected (same as Fig. 50), and
the dashed line corresponds to the replacement A+0 → A+0 + ∆A+0. The right hand plot shows the corresponding
constraints for the first scenario, defined in the previous section, at 1 ab−1.

The observed systematic uncertainty on α depends on whether or not the full isospin analysis is applied. It is small
for the GLSS bound (equivalent to the isospin analysis with upper limit on B(B0 → ρ0ρ0)). However, significant effects
can occur once the full isospin analysis is performed. We estimate the size of the uncertainty for the setup we have
tested to be of the order of 3◦. Notwithstanding, one should keep in mind that the resulting effect depends, on the
one hand, on the relative size of the additional amplitude (192), and, on the other hand, on the particular solution of
the isospin analysis for the contributing amplitudes. It must therefore be (re-)estimated for the set of measurements
that is at hand. Furthermore, a careful experimental analysis may partially disentangle these effects [152].

64 The effect of hadronic isospin-breaking effects is expected to be smaller than the one due to the finite width of the ρ.
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Fig. 55. Confidence levels for α from the B → ρρ isospin analysis where isospin-breaking corrections (with the exception
of electroweak penguins) are neglected (solid lines), and when including a relative 4% correction with arbitrary phases on the
amplitude level (dashed lines), according to (192). The left hand plot gives the results for the present experimental situation
(bound on B(B0 → ρ0ρ0)), while the right hand plot uses the extrapolation to 1 ab−1, defined in Sect. 5.3. It includes the full
isospin analysis with available measurements of S00

ρρ,L and C00
ρρ,L

6 Comparison of amplitude ratios

Numerical values for the ratios of reduced tree and penguin amplitudes for the ππ, ρρ, Kπ and ρπ systems, assuming
the standard CKM fit and specific hadronic hypotheses (see table caption) are given in Table 13. Before discussing in
more detail the results, two reservations are in order: the overall (mainly experimental) uncertainties on these ratios
are still large, and within the 2σ errors no specific conclusions can be drawn from the comparison of the four systems.
The amplitude ratios are obtained assuming strict isospin symmetry for ππ and ρρ, and stronger hadronic hypotheses

Table 13. Magnitudes of penguin-to-tree (|P+−/T+−|) and color-suppressed-to-color-allowed (|T 00
C /T+−|) amplitude ratios

obtained for the four charmless decay modes studied in this part. For the purpose of this comparison, the CKM elements are
not included in the ratios, but their input is taken from the standard CKM fit. We denote by B → ρπ[+−] ([−+]) the branch
where the ρ (π) is emitted by the W . For the ππ and ρρ modes, only isospin symmetry is assumed. Since SU(2) is insufficient at
present, the annihilation and exchange contributions are neglected for the Kπ ratios, and the SU(3) partners K∗+π− and ρ−K+

are used to constrain the corresponding penguin amplitudes for the ρπ modes (see text). The last two lines give the results of
the combined QCD FA fit to the ππ and Kπ data (Sect. VI.2.2). The strong phases obtained in this framework are: in the ππ
system, arg(P+−/T+−) = (−29+5

−2)
◦ and arg(T 00

C /T+−) = (146+6
−2)

◦; and in the Kπ system, arg(P+−/T+−) = (−28+5
−1)

◦ and
arg(T 00

C /T+−) = (−25+8
−5)

◦

Central value ± error at given CL

|P+−/T+−| |T 00
C /T+−|

Mode CL = 0.32 CL = 0.05 CL = 0.32 CL = 0.05 Method

B → ππ 0.23+0.41
−0.10

+0.81
−0.16 0.98+0.58

−0.30
+1.54
−0.49 SU(2)

B → ρρ 0.05+0.07
−0.05

+0.12
−0.05 0.21+0.11

−0.15 ±0.21 SU(2)

B → Kπ 0.04+0.03
−0.01

+0.14
−0.04 1.22+0.32

−0.16
+1.20
−0.32 SU(2)+ no annihil./exch.

B → ρπ[+−] 0.03+0.09
−0.03

+0.11
−0.03 0.48+0.14

−0.16
+0.25
−0.48 SU(3)+ no OZI-peng.

B → ρπ[−+] 0.10+0.02
−0.03

+0.03
−0.06 0.57+0.17

−0.18
+0.33
−0.57 SU(3)+ no OZI peng.

B → ππ 0.18+0.01
−0.03

+0.03
−0.05 1.17 ± 0.20 ±0.41 QCD FA combined fit

B → Kπ 0.17+0.01
−0.03

+0.03
−0.05 1.52+0.42

−0.47
+0.69
−0.71 QCD FA combined fit
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for Kπ and ρπ. The results from the latter two systems should therefore be interpreted with care. The results of the
fit of the QCD Factorization on the ππ and Kπ data (see Sect. 2.2) are also reported.

In the ππ system, the measurement of the time-dependent CP asymmetry requires a potentially large penguin-
to-tree ratio to be in agreement with the standard CKM fit. This was expected after the first measurement of the
surprisingly large branching fraction of B0 → K+π−. However a puzzling feature is that the Kπ data alone prefer
a small value for the same penguin-to-tree ratio, and that the branching fraction for the K+π− mode is somewhat
smaller than the theoretical expectation (see Table 10). Various sources for this discrepancy have been discussed in
Sect. VI.3.

Another feature of the ππ , Kπ and, to a lesser extent, ρπ modes, is the apparent significant violation of the
color-suppression concept. While from the point of view of the 1/Nc → 0 limit this suppression is formally of order
1/Nc ∼ 0.3, näıve semi-perturbative counting predicts a further cancellation, leading to the well known a2 <∼ 0.2
“universal” factor [215]. This property of the so-called “class II” decays, according to the classification of [215],
remains partially true in the QCD factorization formalism [207] although the latter admits the possibility of large
corrections [135]. There is evidence from Table 13 that the present data suggest that the color-suppression mechanism
is ineffective. Different manifestations of violation of the color-suppression concept, and dependence of the a2 factor
with respect to the involved particles, have been observed in simpler B decays65 without penguin contributions, e.g.,
B → J/ψK(∗) and ∆C = 1 transitions [272].

The results for the amplitude ratios fitted simultaneously on the ππ and Kπ measurements within the framework
of QCD factorization are also given in Table 13. We find that this more predictive approach (compared to the fits
based only on flavor symmetry) re-establishes the good agreement between the penguin-to-tree ratios in the ππ and
Kπ systems: this can be interpreted as the consequence of the smallness of the annihilation and exchange contributions
estimated in this approach. However larger |T 00

C /T+−| ratios are found, although with large errors.
Note that our definition of T 00

C implicitly contains long-distance penguin and exchange contributions. Although
the latter are 1/Nc suppressed as well, and there is no model-independent distinction between the different topologies
that are mixed by rescattering phenomena, it may occur that a number of relatively small corrections constructively
interfere in T 00

C and destructively in T+− to eventually give a globally large effect, which could explain the observed
T 00

C /T+− ratio [135,232].
Finally we stress that although the large penguin and color-suppressed amplitudes in the ππ channels likely come

from the same type of non-trivial hadronic dynamics, B → π0π0 cannot be a pure penguin mode. Indeed, were it
the case, in the SU(3) limit and neglecting electroweak penguin contributions B(B0 → π0π0) would be equal to
B(B0 → K0K0)/2, which is disfavored by the current data (see Table 8). This is somewhat unfortunate because
B(B0 → π0π0) ∼ B(B0 → K0K0)/2 would imply a stronger constraint on α from the B → ππ isospin analysis, since
it would closer approach the GLSS bound B00

GLSS− (115).
In näıve factorization, there is a clear hierarchy between penguins in PP , PV and V V modes [266]. This is due

to the Dirac structure of (V − A)(V + A) penguin operators, which do not contribute when the meson that does
not receive the spectator quark (the “upper” meson) is a vector, as in B0 → ρ+π− and B0 → ρ+ρ−. Similarly, these
operators contribute constructively (resp. destructively) with (V −A)(V −A) penguin operators when the upper meson
is a pseudoscalar and the lower meson is a pseudoscalar (resp. vector), as in B0 → ρ−π+ (resp. B0 → π+π−). This
expectation seems to be in agreement with our fits to the present data (see Table 13). However, as a consequence of the
fact that (V −A)(V +A) operators are formally power-suppressed in the full QCD factorization approach, the above
simple hierarchy may receive large corrections [135]. Hopefully, a more detailed dynamical analysis will be possible
when the measurements of the strange PV and V V channels become more complete and precise.

The present pattern of amplitude ratios in the different decays, if confirmed when the experimental errors decrease,
might challenge theoretical approaches that are based on the factorization of non-leptonic matrix elements. Näıvely
suppressed contributions, such as charming penguins [273] or other type of rescattering effects (see, e.g., [274] for
an example of a final state interaction that does not vanish in the 1/mb → ∞ limit), could finally contribute at
leading order: the approach of [218], based on the SCET effective theory, might be able to handle these difficult
problems in a more systematic way. At present, it seems that it would be difficult to keep all these effects small while
maintaining agreement with the central values of the experimental observables, unless one is willing to fine-tune all the
observed “anomalies” with New Physics contributions. An interesting question, among others, concerns the behavior
of rescattering effects with respect to the isospin or SU(3) quantum numbers of the relevant amplitudes. More data
and theoretical work are needed to answer this.

65 Not to mention the large 1/Nc effects in kaon and D-meson decays.
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7 Conclusion

Due to the significant CP asymmetries on one hand, and the presence of loop-induced transitions on the other hand,
charmless B decays can be used for precision measurements of CP violation within the SM, and they are sensitive
probes of physics beyond the SM.

We have studied B → ππ,Kπ decays using various phenomenological approaches with different dynamical as-
sumptions. These include SU(2) and SU(3) flavor symmetries and QCD Factorization. An extra section has been
devoted to the phenomenological analysis of B → Kπ decays due to the peculiarity of the observed branching fraction
pattern. Constraints on (ρ, η) from these decays are weak since the sensitivity to the CKM phase through the tree
amplitude is CKM-suppressed with respect to B → ππ. However the Kπ modes represent a rich field to test flavor
symmetry, QCD Factorization and to search for manifestations of New Physics. For the analysis of B → ρπ decays
we have applied SU(2) and SU(3) symmetry, and SU(2) symmetry is used for the B → ρρ system, mostly because the
branching fractions of the relevant SU(3) partners are not yet well known. Due to the powerful bound on the penguin
pollution in B0 → ρ+ρ− using the upper limit on B0 → ρ0ρ0, a significant constraint on α can be derived from the
measurement of sin 2αeff in a time-dependent analysis of B0 → ρ+ρ− performed by the BABAR collaboration. The ππ
and ρπ systems do not (yet) provide useful constraints from the corresponding isospin analyses, because of the poor
sensitivity to the penguin contribution (ππ) and the lack of a full Dalitz analysis (ρπ).

More specifically, we find for the ππ system that:
– hints of a large penguin contribution and a large violation of the color-suppression mechanism are found with

|P+−/T+−| = 0.23+0.41
−0.10 and |T 00/T+−| = 0.98+0.58

−0.30 so that the SU(2) upper bound fails to provide a significant
constraint on ∆α = α− αeff , for which we find (CL > 10%): −54◦ < ∆α < 52◦.

– a somewhat better bound is obtained from the SU(3) analysis neglecting OZI- and power-suppressed penguin
topologies, −29◦ < ∆α < 28◦, with a weak constraint on α.

– at an extrapolation to 1 ab−1, exclusion areas for α can be obtained with the B → ππ isospin analysis. However
a precise measurement of α from the ππ system alone will likely require larger amounts of data (∼ 10 ab−1) that
could be reached at a next generation B factory.

– useful information in the (ρ, η) plane is obtained with partial input from QCD Factorization: either to gauge the
uncertainty on SU(3) breaking, or to obtain an estimate of the tree and penguin matrix elements (magnitudes and
phases). The constraints obtained in both cases are in agreement with the standard CKM fit.

– the full calculation of QCD Factorization (taking into account model-dependent power-suppressed terms) is required
to accommodate (ρ, η) extracted from the CP measurements with the standard CKM fit. A leading order calculation
(close to näıve factorization) leads only to the marginal compatibility with a p-value of 5 × 10−5. By further
constraining the full model with all ππ and Kπ branching fractions and CP -violating asymmetries measured
so far, one finds the allowed region in the (ρ, η) plane in striking agreement with the standard CKM fit (with
comparable precision) and an overall p-value of 21%.

– we compute projections on the ππ, Kπ observables from the global QCD FA fit, where all observables but the one
that is projected upon are included in the fit (as well as the standard CKM fit). The results are unbiased data
driven predictions and exhibit high precision. The agreement with the measurements is satisfying, with the notable
exceptions of the branching fractions for B0 → K0π0 and B0 → K+π−. The corresponding predictions from QCD
FA alone (without experimental input to constrain the theory parameters) suffer from much larger uncertainties,
which is by part due to the conservative Rfit treatment of the theoretical systematics.

– using SU(3) symmetry we predict the branching fraction and CP -violating asymmetries in B0
s → K+K− decays

from the B → ππ measurements and the standard CKM fit. We find the 95% CL ranges 0.02 < Cs
KK < 0.32 and

0.12 < Ss
KK < 0.27. Only a weak constraint can be derived for Bs

KK , for which however the correlation with Cs
KK

is strong.
For the Kπ system we note:
– the “historical” proposal by Quinn and Snyder to use Kπ modes and isospin symmetry for the extraction of α in the

absence of electroweak penguins leads only to a weak constraint with the present data. The subtle quadrilateral
construction would need very precise measurements to become meaningful, while at the same time there are
convincing arguments that electroweak penguin contributions cannot be neglected.

– the recent proposal to constrain the apex of the UT assuming isospin symmetry, neglecting all annihilation and
long-distance penguin diagrams, and evaluating electroweak penguins in terms of tree amplitudes in the SU(3) limit,
is expected to provide meaningful results when the data become more precise. However the dynamical assumptions
behind this method should be investigated further, since they are crucial for the result. In particular we observe
that the fit systematically prefers a non-zero VusV

∗
ub contribution to B+ → K0π+, although theory predicts a small

effect.
– within the same set of dynamical assumptions, we determine the allowed range of amplitude ratios. Color-

suppression appears to be significantly violated as in the ππ case, while the penguin-to-tree ratio is, quite paradox-
ically, smaller than in the ππ system. This is in näıve contradiction with the idea that the large branching ratios
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Fig. 56. Confidence level from the SU(2) analysis of
B → ππ (light shaded) and B → ρρ (dark shaded)
decays as a function of α. Also shown is the pre-
diction from the standard CKM fit (hatched area),
which includes the world average of sin 2β but ex-
cludes B → ρρ

to Kπ with respect than the ones to ππ are evidence for large penguins in B → PP transitions. Complicated
hadronic mechanisms and/or New Physics effects in either b → d or b → s transitions might be at the origin of
this intriguing pattern. However present experimental uncertainties still exhibit a decent agreement with SU(3)
between ππ and Kπ in the no-rescattering limit.

– the experimental uncertainties hinder us from obtaining significant constraints on electroweak penguin contribu-
tions, even in the most restrictive theoretical scenario where annihilation and exchange topologies are entirely
ignored. The SM expectation for both color-allowed and color-suppressed (the latter one should not be neglected)
electroweak penguins can describe the data; furthermore the feasibility of a more general study including arbitrary
NP contributions in either gluonic or electroweak penguins is not clear, again due to the lack of experimental
precision.

The following conclusions can be drawn from the analysis of the two-body ρπ system:

– scenarios using SU(2) as only input do not constrain α at the first generation B factories if B(B0 → ρ0π0) is
not significantly smaller than expected from color-suppression. The reason for this failure is merely a problem of
experimental precision to resolve α in the pentagon. Setting arbitrarily all strong phases to zero and removing the
penguins leads to a value for α that is in agreement with the standard CKM fit with a statistical uncertainty of
5.4◦.

– within SU(3) symmetry and neglecting OZI- and power-suppressed penguin contributions, we observe some
disagreement between the bound on direct CP -violating asymmetries obtained from B(B0 → ρ−K+) for the
B0 → ρ−π+ branch, and the central value of the measurement. While this is not conflicting within the present
experimental errors, it requires a reduction of the observed A−+

ρπ with more data, if the SM and SU(3) picture
holds.

– within the same SU(3)-based hypotheses, we obtain the bounds |α − α+−
eff | < 17.6◦ and |α − α−+

eff | < 12.6◦ at
95% CL.

– SU(3) flavor symmetry does not help to significantly constrain α when all theory parameters are free to vary since
the eightfold ambiguity due to the unknown relative strong phase δ̂ remains. Using the standard CKM fit as input
leads to the preferred values δ̂ ≈ 0,±π, which is compatible with the no-rescattering expectation.

– all the approaches that we have studied suffer from the lack of knowledge of the interference phase between the
two charged ρ’s, which generate discrete ambiguities. In particular, a powerful constraint on α, competitive with
the standard CKM fit, would be obtained from a Dalitz plot analysis together with the SU(3) constraints from
penguin-dominated partners.

We conclude from the SU(2) analysis of the ρρ system that

– even without a significant measurement of B(B → ρ0ρ0) a useful constraint on α is obtained. The smallness of the
theoretical uncertainties allows us to include the measurements from the B → ρρ system into the standard CKM
fit.

– the success of the ρρ system is threefold: (i) due to the small mass of the ρ with respect to the B, the ρ mesons have
dominant longitudinal polarization (CP -even) with respect to their decay axis; (ii) small penguin contributions
and color-suppression improve the ∆α bounds in absence of the full isospin analysis, and (iii) the capability to
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measure S00
ρρ,L (not possible for S00

ππ) significantly enhances the sensitivity of the full isospin analysis to α, once
B → ρ0ρ0 has been observed.

– the present uncertainty due to the penguin pollution is −20◦ < ∆α < 18◦ for CL > 10% and the total uncertainty
on α is 33◦ at two standard deviations. Including electroweak penguins induces a shift of −2.1◦ ± 0.2◦ on α.

– two (possibly optimistic) attempts to extrapolate the results from the present central values and errors into the
future lead to expected 2σ errors on α of approximately 16◦–19◦ at 500 fb−1 and 10◦–16◦ at 1 ab−1 integrated
luminosities, for the solution that is compatible with the standard CKM fit.

– we study the finite width of the ρ and isospin-breaking effects using a simple ansatz. With a breaking of the
triangular relation at the 4% level, the corresponding uncertainty on α is found to be of the order of 3◦ for the full
isospin analysis, which however depends on the actual values of the B → ρρ observables. Systematic effects from
ππ resonances other than the ρ(770) and/or non-resonant background have been neglected in this study but may
become important when the precision on α increases.

Part VII
New Physics in B transitions

1 General remarks

Despite weak inconsistencies in sin 2β from penguin-dominated modes (see Sect. III.2.10) and in B → Kπ decays
(Sect. VI.3), the SM is able to accommodate the data from the B-meson and kaon systems within the present exper-
imental and theoretical uncertainties. Hence there is no need (yet) to introduce contributions from physics beyond
the SM. However, this does not necessarily mean that New Physics (NP) contributions are totally absent. It is thus
interesting to investigate how far today’s experiments can constrain NP parameters.

A large variety of specific NP models exists in the literature, but for the purpose of a global CKM fit, one should
adopt a parameterization that is as model-independent as possible. The results obtained under general assumptions
may then be used to draw conclusions upon more specific classes of models.

The NP analysis we are performing below proceeds in two steps:

– in the first step, we list the observables that are expected to be dominated by the SM contributions, according
to a specific assumption we make on the nature of the potential NP. These observables are used to construct a
model-independent Unitarity Triangle [275], followed by a constrained fit on NP contributions in B0B0 mixing.

– in the second step, the result of this fit is used as an input to probe NP in B decays with sizable contributions
from b → d or b → s gluonic penguins.

Because the present experimental errors are still large, and since several key modes are not yet well known, we do
not attempt to perform an exhaustive numerical analysis as we did for the SM fit. In some cases we use a rather
“aggressive” interpretation of the experimental results, which is justified in view of the expected improvement of the
measurements in the near future. The studies presented hereafter are to be viewed as preliminary proposals, which
nevertheless allow us to draw instructive conclusions.

2 New Physics in ∆B = 2 transitions

With the use of dimensional arguments [276], one finds that in a large class of models NP contributes mainly to the
B0B0 mixing amplitude (∆B = 2). We will hence allow for arbitrary NP corrections to the mixing, while however
keeping the possibility that also the decays (∆B = 1) are non-standard.

New Physics effects in B0B0 mixing can be described model-independently by two additional parameters, r2d and
2θd, with the definition [277,278]

r2d e
i2θd =

〈B0|Hfull
eff |B0〉

〈B0|HSM
eff |B0〉 , (193)

where Hfull
eff comprises NP and SM contributions and where HSM

eff contains only the SM contribution. The SM values
for these parameters are r2d = 1 and 2θd = 0.

We elaborate an analysis allowing to constrain both CKM (ρ and η) and NP (r2d and 2θd) parameters related to
flavor-changing processes. It uses observables from the B-meson system only since they are more sensitive to ρ and η
than those obtained from the kaon system. It is inspired by similar previous analyses [278,279,276].
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2.1 Basic assumption on New Physics and physical inputs

As in most model-independent NP parameterizations, we assume that NP contributions to tree-mediated decays are
negligible. More specifically, we require that decay transitions with four flavor changes (i.e., b → q1q̄2q3, q1 �= q2 �= q3)
are dominated by the SM (SM4FC). Hence the CKM parameters related to these decays are extracted within the SM,
with the presence of the additional parameters coming from NP in B0B0 mixing. Here we assume that the unitarity
of the CKM matrix still holds in the presence of NP, in order to ensure that the SM contribution to the B0B0 mixing
keeps its usual expression as a function of (ρ, η) and other theoretical parameters.

The observables allowing us to constrain the SM and NP parameters within this well-defined assumption are listed
below:

– |Vub| and |Vcb| from b → u and b → c semileptonic decays, which are the same as in the SM (Sect. III.2).
– the constraint on tan γ from the Dalitz plot analysis of B+ → D0K+ decays (the CL on γ obtained in this analysis

has to be interpreted with care, as discussed in Sect. V.2).
– the CP -asymmetry measurement in b → cūd and b → uc̄d non-leptonic decays (Sect. V.1), which determines

| sin(2β + 2θd + γ)|. We use the CL determined by the toy simulation described in Sect. V.1, because it gives a
stronger constraint than the Gaussian approximation.

– the ∆I = 3/2 amplitude of b → uūd transitions is standard within the SM4FC assumption66: hence, the isospin
analysis of B → ππ and/or longitudinally polarized B → ρρ decays and the Dalitz plot analysis of B0 → (ρπ)0
can be used to extract the quantity sin(2β+2θd +2γ) (cf. Sect. VI.1.1.3). Since the constraint from the ππ system
is rather weak at present and the ρπ Dalitz plot analysis is not yet available, we will only use ρρ in the following
(cf. Sect. VI.5).

– the mixing-induced CP asymmetry in b → cc̄s transitions (e.g., B0 → J/ψK0) determines (2β + 2θd), provided
that NP contributions to the decay amplitudes of these transitions are negligible (for general arguments see, e.g.,
[280]). Although this hypothesis does not belong to the SM4FC rule, generic non-standard corrections to b → cc̄s
amplitudes are likely to be small, because these modes are dominated by V ∗

cbVcs SM tree amplitudes: QCD penguins
that would receive contributions from new particles in the loop are dynamically suppressed by the weak coupling of,
e.g., the J/ψ to gluons, while Z-penguin effects are expected to be at most at the level of the current experimental
uncertainty [281].

– the constraint on the sign of cos(2β + 2θd) from the time- and angular-dependent analysis of B0 → J/ψK∗0

decays (cf. Sect. III.3.5). We use the Gaussian interpretation of the experimental result, which essentially imposes
cos(2β + 2θd) > 0, since it gives a stronger constraint than the (correct) Monte-Carlo simulation.

– the B0B0 oscillation frequency, as given by ∆md = r2d ×∆mSM
d .

– the CP -violating charge asymmetry in semileptonic B decays ASL defined by

ASL ≡ Γ (B0(t) → �+X) − Γ (B0(t) → �−X)
Γ (B0(t) → �+X) + Γ (B0(t) → �−X)

. (194)

In the presence of NP in mixing its theoretical prediction reads [283–286,282]:

ASL = −Re
(
Γ12

M12

)SM sin 2θd

r2d
+ Im

(
Γ12

M12

)SM cos 2θd

r2d
, (195)

where Γ12 and M12 are respectively the absorptive and dispersive parts in the B0B0 mixing amplitude.
The theoretical prediction of (Γ12/M12)

SM at leading order 67 reads [282]:(
Γ12

M12

)SM

= − 4πm2
b

3m2
W ηBS0 (m2

t/m
2
W )

[(
K1 +

K2

2

)
+
(
K1

2
−K2

)
m2

B −m2
b

m2
bB

+ (K2 −K1)

(
5B

′
S

8Bd
+ 3z

1 − ρ− iη

(1 − ρ)2 + η2

)]
, (196)

where K1 and K2 are Wilson coefficients, z ≡ m2
c/m

2
b and ηB = ηB × [αS(mb)]−6/23(1+(αS/4π)(5165/3174)). The

corresponding input values are given in Table 14.
66 The Gronau-London isospin analysis allows to isolate the ∆I = 3/2 amplitude (see Sect. VI.1.1.3), which is proportional
to VudV

∗
ub in the SM4FC hypothesis (up to a small and computable VtdV

∗
tb electroweak penguin contribution that we take into

account). This holds independently of the magnitude and (CP -conserving plus CP -violating) phase of the ∆I = 1/2 amplitude,
which a priori receives contributions from both the SM (tree and penguin diagrams) and the NP.
67 Next-to-leading order calculations of ASL have been performed in [287,288]. We do not use these results in our analysis since
experimental errors dominate at present. With increasing precision the NLO results must be included.
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Table 14. Inputs used to predict the semilep-
tonic CP -violating asymmetry ASL, which are
not already defined in Table 1. The errors given
are treated as systematic theoretical uncertain-
ties within Rfit. If no error is given the un-
certainty of the corresponding quantity is ne-
glected. The last line quotes the experimental
average

Parameter Value ± error Reference

αS(mb) 0.22 [282]
K1 −0.295 [282]
K2 1.162 [282]
mpole

b 4.8 ± 0.1theo [282]
z 0.085 ± 0.010theo [282]

ASL (−0.7 ± 1.3) × 10−2 see text

Table 15. Inputs to the fit with free New Physics contributions to B0B0 mixing, and their
dependence with respect to the SM and NP flavor changing parameters. Discussions on the discrete
ambiguities occurring in the measurements of tan γ, | sin(2β+ 2θd + γ)| and sin(2β+ 2θd + 2γ) are
given in the corresponding sections

Constraint SM & NP dependence Numerical value

|Vcb| and |Vub| |Vcb| and |Vub| Sect. III.2
B+ → D(∗)0K+ Dalitz plot analysis tan γ Sect. V.2.
B0 → D(∗)±π∓ CP asymmetries | sin(2β + 2θd + γ)| Sect. V.1 (“toy”)
B → ρρ isospin analysis sin(2β + 2θd + 2γ) Sect. VI.5
B0 → J/ψK0 CP asymmetry sin(2β + 2θd) Sect. III.2
B0 → J/ψK∗0 time-dependent angular analysis cos(2β + 2θd) Sect. III.2 (“Gauss.”)
∆md ∆mSM

d r2d Sect. III.2
ASL (195), (196) Table 14

We find the experimental value ASL = −0.007±0.013 as an average of several measurements: the direct determina-
tion of ASL [289–292] is dominated by the BABAR result ASL = 0.005±0.012±0.014 [292]. The BABAR Collaboration
also measured the quantity |q/p| = 1.029 ± 0.013 ± 0.011 with a fit to fully reconstructed B decays [293]. This
translates into ASL = (1 − |q/p|4)/(1 + |q/p|4) = −0.057 ± 0.033.

A summary of the observables used in the NP fit is given in Table 15. The number of independent constraints is
sufficient to constrain both (ρ, η) on the one hand, and (r2d, 2θd) on the other hand, up to discrete ambiguities.

We do not include the CP -violation parameter εK because it does not improve the constraint on (ρ, η), unless
possible NP contributions to K0K0 mixing are negligible, which is not a priori known. We do not consider input from
s → d and b → s transitions either, which are therefore left free in the fit within and beyond the SM.

2.2 Results

We perform a global fit using the inputs from Table 15 with r2d and 2θd left free to vary. The constraint obtained in
the (ρ, η) plane when excluding the sign measurement of cos(2β+2θd) is shown in the left hand plot of Fig. 57. There
are eight solutions for the CKM angle γ, numbered from 1 to 8, that lie on a circle determined by |Vub/Vcb|. Solutions
3, 4 and 7 have CLs below 5 % and are therefore not shown on this plot. The other individual solutions are not well
separated yet due to the experimental uncertainties in the determination of γ from D(∗)0K+, D(∗)±π∓ and ρρ. If we



The CKMfitter Group: CP violation and the CKM matrix 101

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

SM CKM Fit

5

1

7

3

6

4

2

8

ρ

η

shaded areas have CL > 0.05, 0.32, 0.90

New Physics in B0B0 mixing
C K M

f i t t e r
Winter 2004

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

SM CKM Fit

5

1

ρ
η

shaded areas have CL > 0.05, 0.32, 0.90

New Physics in B0B0 mixing
C K M

f i t t e r
Winter 2004

-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

5 1

γ     (deg)

2β
+

2Θ
d

(d
eg

)

shaded areas have CL > 0.05, 0.32, 0.90

New Physics in B0B0 mixing
C K M

f i t t e r
Winter 2004

Fig. 57. Constraints in the (ρ, η) (top) and (γ, 2β + 2θd) (bot-
tom) planes from the fit in the framework of New Physics in B0B0

mixing. The top right and bottom plots give the corresponding
constraint when using only the two solutions β+θd and π+β+θd

that are favored by the cos(2β+2θd) > 0 evidence in B0 → J/ψK∗

decays (Sect. III.3.5)

impose in addition the constraint68 cos(2β+2θd) > 0, derived from the analysis of J/ψK∗ decays [138], we obtain the
right hand plot of Fig. 57 where four out of eight solutions are further suppressed.

The CL for η = 0 in these fits depends crucially on the inputs from Table 15, in particular on the current inputs from
the B+ → D(∗)0K+ Dalitz plot analysis (tan γ), the B0 → D(∗)±π∓ CP asymmetries (| sin(2β+2θd +γ)|), the B → ρρ
isospin analysis69 (sin(2β + 2θd + 2γ)) and the B0 → J/ψK∗0 time-dependent transversity analysis (cos(2β + 2θd)).
With these inputs the possibility that CP violation is absent in the SM is quite unlikely. With additional conjectures on
the NP’s nature, one could obviously improve the constraints: for example, with the assumption that NP is negligible
in the decay, any non-zero direct CP -asymmetry measurement implies η �= 0 (e.g., the measurement of ε′/ε > 0).
Generally speaking, the solution η = 0 is not a natural value in the SM: the region of very small η corresponds to

68 As described in Sect. III.3.5, this is an optimistic assumption, since the cos(2β) > 0 result found in [138] is not yet statistically
significant.
69 Even if C+−

ρρ,L significantly departed from zero, the solution η = 0 would still be allowed by the full isospin analysis in
B0 → ρρ. This is because the isospin analysis only constrains the weak phase of the ∆I = 3/2 amplitude, and not the one of the
∆I = 1/2 amplitude, which could come from a different source of CP violation. In the SM, these two phases are nevertheless
correlated since they are related to common CKM couplings.
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a fine-tuning scenario, in which the SM generates vanishingly small CP violation, whereas large NP couplings are
needed to accommodate the data. See however [294] for an example of multi-Higgs-doublet model that naturally
predicts a real-valued CKM matrix. We note that at that time less experimental input was available and consequently
a real-valued CKM matrix could not be excluded.

Remarkably, Solution 1 in Fig. 57 is not only consistent with the standard (SM) CKM fit but also has the largest
CL: the SM solution is clearly preferred, while however the mirror solution 5 cannot be excluded at the 1σ level. At
first sight, this is not surprising since most of the observables used in the fit are expected to be dominated by SM
contributions. Nevertheless this leads to an important consequence, namely that NP corrections to B0B0 and K0K0

mixing are likely to be small. In the case of B0B0, this is illustrated in Fig. 58 showing the constraints in the (r2d, 2θd)
plane: the SM solution r2d = 1 and 2θd = 0 is favored. Values for r2d as large as 2–3 cannot be excluded yet, which means
that in principle order one NP contributions to the mixing are allowed. Still, the model-independent constraint on r2d is
much better than in the previous similar analyses; the uncertainty will decrease with better precision on ∆md and ASL
and, in particular, on fBd

√
Bd. This highlights the need for improved determinations of the parameter fBd

√
Bd both

from theory (e.g., from improved Lattice QCD calculations) and from experiment (e.g., from constraining |Vub|fBd
by

a rate measurement of B → �ν� decays). The constraint on r2d would also be improved with a better knowledge of the
angle γ.

With the constraint on (ρ, η) shown in the right plot in Fig. 57, we determine the contribution to |εK | coming from
the Standard Model. For Solution 1 we find 1.3 × 10−3 < |εK |SM < 5.0 × 10−3 for CL > 5%. This can be compared
to the experimental value, |εK | = 2.282 × 10−3, and the constraint 1.1 × 10−3 < |εK |CKM < 4.9 × 10−3 at CL > 5%
(Table 2, Sect. III.3.2) obtained from the standard CKM fit. That is, neither in the framework of NP in B0B0 mixing
nor in the SM, one can exclude NP contributions to K0K0 mixing of order 100% due to the uncertainties on the bag
parameter BK and also, to some extent, on the charm quark mass mc (cf. Table 1, Sect. III.3.2). Solution 5 leads
to negative values for |εK |SM and could only accommodate the measurement in the presence of NP effects in K0K0

mixing that, in addition to being large, would have a sign opposite to the SM contribution.
It is interesting to note that no solution is obtained for 2θd = π. In Minimal Flavor Violation (MFV) NP models (see,

e.g., [295]) a single real parameter, Ftt, is needed in addition to those of the SM to describe model-independently all the
observables. In the SM, the value of this parameter is Ftt|SM = S(m2

t/m
2
W ) = 2.41, where S(m2

t/m
2
W ) is the Inami-Lim

function in the B0B0 mixing amplitude. Our fits exclude a negative sign for Ftt corresponding to 2θd = π leaving
Ftt > 0 as the preferred solution. The parameter Ftt is related to our parameterization by r2d = |Ftt|/S(m2

t/m
2
W ). With

the inputs from Table 15 we obtain the range 1.03 < Ftt < 4.41 for CL > 10%. In MFV models the NP contribution to
B0B0 mixing is directly related to the NP contribution to K0K0 mixing. When taking into account the εK constraint
we obtain 1.03 < Ftt < 4.18 for CL > 10%. In addition, the modification of ∆ms in MFV models is the same as in
∆md. When also taking into account ∆ms in the fit, the bounds on Ftt are further tightened: we find 1.18 < Ftt < 4.01
for CL > 10%.

An interesting question is how the non-standard Solution 5 can be excluded, independently of the argument based
on |εK | given above. A reduction of the uncertainties in the B+ → D(∗)0K+ Dalitz plot analysis, in the B0 → D(∗)±π∓
CP asymmetries and in the B → ρρ isospin analysis will not help in this respect [156], since all these constraints are
invariant under the transformation γ → γ + π. However, discriminating the Solutions 1 and 5 would be possible if the
measurement of ASL could be significantly improved.
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In contrast to the analysis performed in [276], we study NP contributions to B0B0 mixing model-independently, i.e.,
without the neglect of NP in the decay and without any dynamical assumption. Better constraints can be expected,
for instance, when precise measurements of γ from tree-level decays become available.

3 New Physics in ∆B = 1 decays

Flavor-changing neutral currents that occur only at the loop level in the SM receive large corrections in many generic
New Physics scenarios [296]. In this section we present constraints on b → d and b → s transitions in a model-
independent framework.

3.1 B → PP modes: B0 → π+π− versus B+ → K0π+

The constraints on the angles γ and 2β + 2θd, obtained in the ∆B = 2 analysis of the previous section, is used to
constrain possible NP contributions in ∆B = 1 transitions. For this purpose, we fit the magnitude of the penguin
amplitude |P+−| occurring in B0 → π+π−. More precisely, we define the ratio of b → d to b → s transitions by

rP
ππ ≡

√
τB+

τB0

PS
∣∣VcsV ∗

cbP
+−
ππ

∣∣2
B(K0π+)

, (197)

where PS stands for the usual two-body phase space factor and where the penguin amplitude is defined, in contrast
to Sect. VI.1.1.1, in the T convention

A(B0 → π+π−) = VudV
∗
ubT

+−
ππ + VcdV

∗
cbP

+−
ππ . (198)

Although at first sight (198) relies on the SM and CKM unitarity, it remains valid in the presence of arbitrary NP
contributions, since any new amplitude with a new CP -violating phase can be decomposed into two independent CKM
couplings70. In other words, (198) is the most general parameterization of the decay amplitude both within and beyond
the SM.

In the SM the ratio rP
ππ is expected to be of order one: it would be equal to one if SU(3) symmetry were exact and

in the limit of vanishing annihilation/exchange and electroweak penguin topologies (cf. Sect. VI.1.2.3). Thus, any large
( >∼ 30%) deviation would be a hint of non-standard particles occurring in the gluonic or electroweak penguin loops.
Using (198) for the decay and (193) for the mixing, one can express rP

ππ in terms of the experimental observables and
the angles γ and 2β + 2θd

rP
ππ =


τB+

τB0

B(π+π−)
2λ2B(K0π+)

1 −
√

1 − C+−
ππ

2
cos(2β + 2θd + 2γ + 2αeff)

sin2 γ




1
2

. (199)

Figure 59 shows the confidence level as a function of γ and rP
ππ, using the following input quantities:

– the constraints on γ and 2β + 2θd obtained from the New Physics fit in B0B0 mixing as shown in the bottom plot
of Fig. 57.

– the CP -violating asymmetries in B → π+π−: C+−
ππ and S+−

ππ =
√

1 − C+−
ππ

2
sin 2αeff (Table 8, Sect. VI.1.3).

– the branching fractions of the three B → ππ modes (Table 8, Sect. VI.1.3), assuming isospin symmetry.
– the branching fraction of B+ → K0π+ (Table 8, Sect. VI.1.3).

The resulting constraints on rP
ππ prefer an order one value. Since we expect deviations up to ±30 % from one due

to the violations of the relation between π+π− and K0π+ penguin amplitudes, non-standard corrections could be as
large, in principle, as the SM contribution. More precise measurements of the observables in the ππ system would
significantly reduce the allowed domain for rP

ππ, while the γ input from the NP fit in B0B0 mixing is found to be less
crucial.
70 This can be seen as follows. Let us denote by MNPe

iφNP an arbitrary NP amplitude with a CP -violating phase φNP.
One finds the identity MNPe

iφNP = VudV
∗

ubTNP + VcdV
∗

cbPNP with TNP = MNPIm
[
eiφNPV ∗

cdVcb

]
/Im [VudV

∗
ubV

∗
cdVcb] and PNP =

MNPIm
[
VudV

∗
ube

−iφNP
]
/Im [VudV

∗
ubV

∗
cdVcb]. The whole effect of NP in the decay amplitude is to modify the “T”-type and

“P”-type amplitudes with respect to their SM values.
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Fig. 59. Confidence level in the (γ, rP
ππ) plane obtained by the fit

including NP in B0B0 mixing and in b → d, s transitions

3.2 B → V P modes: B → φK0 versus B+ → K∗0π+

The b → d to b → s penguin ratio can be studied in vector-pseudoscalar channels using, for example, the ρπ modes
compared to the K∗π and Kρ partners. However a Dalitz plot analysis of the π+π−π0 three-body decay is necessary
to extract the penguin amplitudes. Hence we focus on the ratio of two b → s transitions, represented by the decays
B0 → φK0 and B+ → K∗0π+ (see also [297]). The first is particularly interesting in view of the marginal agreement
between BABAR and Belle in the measurement of the CP -asymmetry71 SφK ; general studies of this decay can be found
in [298].

We define the B0 → φK0 amplitude in the T convention by

A(B0 → φK0) = VusV
∗
ubP

u
φK + VcsV

∗
cbP

c
φK , (200)

and the corresponding penguin ratios by

rc
φK ≡

√√√√τB+

τB0

PS
∣∣∣VcsV ∗

cbP
c
φK

∣∣∣2
B(K∗0π+)

, r
u/c
φK ≡

∣∣∣∣∣P
u
φK

P c
φK

∣∣∣∣∣ . (201)

In the SM, rc
φK is expected to be close to one, if SU(3) is a good symmetry and if electroweak penguins and annihilation

topologies are negligible. Long-distance u- and c- penguins are expected to be suppressed by 1/mb according to QCD
FA [207]. Thus a value of rc

φK (resp. ru/c
φK ) that differs significantly from one would point towards non-standard

contributions in electroweak penguins (resp. in either gluonic or electroweak penguins72). Note also that Pu
φK appears

in (200) together with a λ2-suppressed factor. Thus the natural order of magnitude of the ratio ru/c
φK in the presence

of a b → s NP amplitude that competes with the SM contribution is 1/λ2.
The explicit expressions for rc

φK and ru/c
φK in terms of the observables are

rc
φK =


τB+

τB0

B(φK0)
2B(K∗0π+)

1 −
√

1 − C2
φK cos(2β + 2θd + 2γ − 2βeff)

sin2 γ




1
2

, (202)

r
u/c
φK =

1
λ

∣∣∣∣ Vcb

Vub

∣∣∣∣

 1 −

√
1 − C2

φK cos(2β + 2θd − 2βeff)

1 −
√

1 − C2
φK cos(2β + 2θd + 2γ − 2βeff)




1
2

. (203)

71 We use here the notation SφK and CφK for both decays B0 → φK0
S and B0 → φK0

L, where the relative sign in φK0
S with

respect to φK0
L is taken into account when the results of both channels for SφK are averaged. NP effects that could spoil the

relation between the two decays are expected to be highly suppressed [299].
72 As pointed out in [133], it is not possible from the present data, and from theoretical arguments derived with the use of
strict SU(3), to exclude a value of the ratio ru/c

φK as large as ∼ 10 in the SM. Such an extreme value would point to very large

non-perturbative rescattering effects. However we stress that the natural expectation in the SM is ru/c
φK ∼ 1. More data and a

better understanding of rescattering effects in B decays will help to clarify the situation.
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Fig. 60. Confidence levels in the (γ, rc
φK) (upper) and (γ, ru/c

φK ) (lower) planes for BABAR (left) and Belle (right), obtained by
the fit including NP in B0B0 mixing and in b → s transitions. On the BABAR plots, small (resp. large) values for rc

φK (resp.
r

u/c
φK ) correspond to the solution cos 2βeff < 0, and conversely. On the Belle plots, the two solutions are merged

We set CLs on the quantities rc
φK and r

u/c
φK , where we distinguish between the BABAR and Belle results for CφK and

SφK since they lead to different implications. The fit inputs used are:

– the constraints on γ and 2β + 2θd obtained from the NP fit in B0B0 mixing as shown in the left hand plot of
Fig. 57.

– the branching fraction B00
ΦK = (8.3+1.2

−1.0) × 10−6 [62], and the CP asymmetries in B0 → φK0, CφK and SφK =√
1 − C2

φK sin 2βeff . BABAR measures: SφK = 0.47 ± 0.34+0.08
−0.06, CφK = 0.01 ± 0.33 ± 0.10 [136], and Belle finds:

SφK = −0.96 ± 0.50+0.09
−0.11, CφK = 0.15 ± 0.29 ± 0.08 [137,62], where the first errors given are statistical and the

second systematic.
– the branching fraction B0+

K∗π (Table 11, Sect. VI.4.2).

The CL on (γ, rc
φK) for SφK and CφK measured by BABAR (upper left hand plot in Fig. 60) shows two solutions

for rc
φK due to the the twofold ambiguity73 on 2βeff . One of the solutions (cos 2βeff > 0) is in agreement with rc

φK
being one as expected if non-standard electroweak penguins are absent. In the case of the SφK and CφK results from
Belle (upper right hand plot in Fig. 60) the two mirror solutions cannot be distinguished due to the SφK value being
close to minus one. Also in this case, the constraint on rc

φK is in agreement with one, which recalls the remark in [300]
that the measured branching ratio to φK is compatible with what is theoretically expected.

73 In the π+π− case (see the preceding section), the second solution for cos 2αeff is suppressed by the additional constraints
coming from the other ππ branching fractions.
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In the case of ru/c
φK , one of the solutions (cos 2βeff > 0) for the BABAR measurement (lower left hand plot in Fig. 60) is

consistent with order one values whereas the other solution (cos 2βeff < 0) prefers large values. On the contrary, for the
Belle result (lower right hand plot in Fig. 60), rather large values for ru/c

φK > 10 are preferred indicating non-standard

gluonic or electroweak penguins. Since rc
φK is found to be compatible with one, these large ru/c

φK values suggest that
the anomaly, if there, may stem from gluonic penguins rather than from electroweak penguins, in contrast to some
proposals in the literature [281,301]. It is worthwhile to note that the constraints ru/c

φK and rc
φK can be significantly

improved in the future by reducing the experimental uncertainties on SφK and CφK , and that again the γ input is
less crucial here.

4 Conclusion

We have studied the constraints from present data on the amplitude parameters in the presence of arbitrary New
Physics contributions to K0K0 and B0B0 mixing, and to b → d and b → s penguin transitions. The construction of
a model-independent Unitarity Triangle is not (yet) precise enough to exclude sizable non-standard corrections to the
mixing, in contrast to a prejudice commonly found in the literature.

The above statement should be softened in view of the great success of the standard CKM fit. Although this success
could be accidental, the more general description including NP contributions is not particularly satisfying since it does
not improve the fit while adding new, unknown parameters. Notably, the preferred region is consistent with the SM
values for the NP parameters in K0K0 and B0B0 mixing. It might still be that NP contributions to K0K0 and B0B0

mixing may still be present, but can only be uncovered if the uncertainties on the inputs are significantly reduced. This
situation will improve in the future as soon as accurate determinations of the angles α and γ from tree-dominated
decays become available, the sign of cos(2β + 2θd) is fully settled and improved determinations of the parameter
fBd

√
Bd are obtained.

We have proposed a fully model-independent parameterization of ∆B = 1 decays. Present errors are large, thus
excluding any definitive statement. A more precise measurement of the observables of the B → ππ decays, in particular
the time-dependent CP -asymmetry in π+π−, would greatly improve the constraint on the b → d to b → s amplitude
ratio, while the input on the angle γ from the model-independent UT fit is less crucial. Still it can be said that
potential NP contributions cannot exceed 100% of the SM strength of the b → d transition. More complete data on
the b → uūd decays to V P and V V final states would provide valuable independent information. In addition, our fits
to the B0 → φK0 CP asymmetries measured by BABAR and Belle show that the Belle measurement slightly prefers
NP contributions with gluonic, rather than electroweak, penguin quantum numbers. However, the discrepancy with
the BABAR result prevents us from drawing a firm conclusion.

Part VIII
Conclusion

During five years of successful running of the B factories, the experiments BABAR and Belle have produced a wealth of
results, which greatly extend the knowledge on B physics acquired at the precursor experiments ARGUS, CLEO, the
LEP collaborations as well as CDF. Also using the measurement of indirect CP violation in the neutral kaon system,
these experiments succeeded to predict CP violation in the B system, namely sin 2β, with a good precision and far prior
to its direct measurement. Today, however, the measurement of sin 2β surpasses in precision the indirect determination.
It represents the primary constraint on the Unitarity Triangle, and the only one that is theoretically fully under control.
Yet, the determination of ρ, η still requires input from measurements for which the theoretical predictions suffer from
notable hadronic uncertainties. While these are reasonably well controlled, as far as the corresponding matrix elements
can be computed with Lattice QCD, they exhibit large errors. It is the goal of the B factories to reduce this dependence
on the strong interaction theory by means of direct and precise measurements of the three Unitarity Triangle angles
and the two sides.

Since α and γ are linked to CKM-suppressed b → u transitions, large statistics samples are required for their
measurement. Encouraging results have been presented recently by BABAR on the measurement of sin 2αeff from a
time-dependent analysis of B0 → ρ+ρ−. Using its SU(2) partners measured by BABAR and Belle, one can determine
α with a precision of 19◦ at 90% CL, limited by the unknown penguin contribution. Due to the weak sensitivity to
the penguin contamination of the isospin relations in B → ππ, the results on sin 2αeff from the measurement of time-
dependent CP asymmetry are less constraining. The analysis of B → ρπ decays mainly lacks the information from
the Dalitz plot on the strong phase between the ρ+π− and ρ−π+ states of the B0 decay. The near future will clarify
the achievable precision on α with these modes, which strongly depends on the underlying decay dynamics. Large
B-related backgrounds, which are unknown to some extend at present, complicate the experimental analysis of B → ρρ
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and (to a lesser degree) B → ρπ decays, and hence produce sizable systematic uncertainties. The fruitful competition
among the leading experiments provides important redundant measurements for these modes. The extraction of γ from
the interference of b → c with b → u transitions is even more challenging due to the disparateness of the amplitude
sizes, which suppresses either the observable CP -violating asymmetries or the total rate. A significant measurement
of γ in a single mode requires larger data samples than those presently available. One way out of this is to combine
measurements from a large number of different modes.

Two-body charmless B decays into pions and kaons are particularly convenient for phenomenological analyses
since all modes, apart from those dominated by suppressed annihilation, exchange or b → d penguin amplitudes,
have been measured. Also, the simplicity of the experimental signature reduces the systematic uncertainties. Penguin
contributions, even in decays without net strangeness in the final state, make them to potentially sensitive probes of
physics beyond the Standard Model.

Similarly, the measurement of mixing-induced or direct CP violation in modes that are dominated by b → s penguin
amplitudes enjoy rising interest and are among the most anticipated results of the B factories. We note that a claim for
New Physics not only requires that at least one of these modes departs from the Standard Model reference value, but
also that they disagree among themselves if one wants to avoid a fine-tuning scenario. Due to the (inspiring) dissonance
from the many models introducing New Physics phenomena and predicting specific effects on the observables, it is
difficult to investigate New Physics in a systematic way. We have therefore chosen to build a general parameterization
of generic New Physics amplitudes that interact in B0B0 mixing and/or penguin B decays. The global CKM fit allows
us to derive constraints on these generic New Physics amplitudes. Specific New Physics models have then to be in
accordance with the allowed generic variable space.

We summarize in the following the main developments and results described in this work.

– All results are obtained with the use of the software package CKMfitter that employs statistical analysis tools based
on the frequentist approach Rfit. We have extended the analysis to take into account one- and two-dimensional
physical boundary conditions as they occur in CP -asymmetry measurements.

– Among the main results of this paper are the numerical (Tables 2 and 3) and graphical (Figs. 5, 6, 7 and 8)
representations of the global CKM fit. The values of the Wolfenstein parameters λ, A, ρ, η are found to be in
agreement with the results from our previous analysis (2001), and their 1σ errors have changed by relative +14%,
−58%, −45% and −64%, respectively, mainly due to the experimental improvements on sin 2β and |Vcb|. We find
for the apex of the Unitarity Triangle, the coordinate ρ = 0.189+0.088

−0.070 and η = 0.358+0.046
−0.042. For the goodness of

the global CKM fit within the Standard Model, we find a p-value of 71%.
– We have analyzed observables from rare kaon decays related to ρ, η and derived constraints on the hadronic

parameters B6, B8, related to ε′/ε. We discuss the present and future constraints in the unitarity plane from the
rare decays K+ → π+νν and K0

L → π0νν.
– The constraints on 2β + γ and γ respectively from the CP analyses of B0 → D(∗)±π∓ and B+ → D0K+ decays

are displayed. The present experimental errors are still too large to be competitive with the other measurements
used in the global CKM fit.

– Results on charmless B decays to hh′ (h, h′ = π,K) are studied in four different scenarios based on SU(2) and
SU(3) flavor symmetries as well as QCD Factorization. Useful constraints on α are only obtained with significant
theoretical input. A global fit of QCD Factorization to all available ππ,Kπ observables leads to an acceptable
overall description (p-value of 21%), however with large non-factorizable corrections, and is remarkably predictive
(cf. Fig. 35). Two predictions show deviations from the measurements: the branching fractions for B0 → K+π−
and B0 → K0π0, which come out somewhat large and small, respectively. The discrepancy does however not exceed
2.5 standard deviations in the worse case. The constraint on ρ, η obtained from this fit is in agreement with the
global CKM fit and competitive in precision. We do not observe significant hints for deviations from the Standard
Model in these decays. Using SU(3) symmetry, we predict the branching fraction and CP -violating asymmetries in
B0

s → K+K− decays.
– A specific section has been dedicated to the study of B → Kπ decays, where we analyze the impact of electroweak

penguins in discussing the recent literature. Using a phenomenological parameterization and various dynamical
hypotheses, we find that the current data do not significantly constrain electroweak parameters, neither hadronic
amplitude ratios. In particular, the determination of the parameters related to electroweak penguins is not possible
at present. We do not observe an unambiguous sign of New Physics, whereas central values of the parameters show
evidence for potentially large non-perturbative rescattering effects. It is not clear to us whether a unified theoretical
approach would be able to explain the whole set of observables in the ππ and Kπ systems, if future measurements
confirm the present pattern.

– Results on charmless B decays to ρπ and their SU(3) partners are studied with the use of SU(2) and SU(3)
flavor symmetry. The discrete ambiguities due to the unknown relative strong phase between the B0 → ρ+π−
and B0 → ρ−π+ amplitudes obstruct useful constraints on α in these modes. A Dalitz plot analysis is required
to measure this phase. Within SU(3) symmetry and neglecting certain suppressed topologies, bounds on direct
CP -violating asymmetries are derived. It is found that the present amount of direct CP violation measured by the
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parameter A−+
ρπ tends to violate this bound, suggesting that the size of the effect is a statistical fluctuation that is

expected to reduce with the availability of more data.
– The isospin analysis of the B → ρρ system provides a useful constraint on α, which is found to be in agreement with

the expectation from the global CKM fit. Including isospin-breaking corrections from electroweak penguins, and
choosing the solution that is preferred by the CKM fit, we derive from the BABAR measurement of time-dependent
CP asymmetries in B0 → ρ+ρ− decays α = (94 ± 12 [+28

−25] ± 13 [19])◦. Here the first errors given are experimental,
the second due to the penguin uncertainty, and the errors in brackets are at 2σ. If color suppression holds and
if penguins are small, we expect that the present branching fraction measured for B+ → ρ+ρ0 should reduce
with more data in order to close the isospin triangles. The potential to measure mixing-induced CP violation in
B0 → ρ0ρ0 promises a brighter future, to reduce the uncertainty α − αeff due to the unknown penguin pollution
in ρ+ρ−, than it can be expected for ππ. We have studied a simple extension of the isospin analysis to account for
possible isospin-breaking effects. We find that the systematic uncertainties on α for the full isospin analysis can be
of the order of 3◦, depending on the amplitude structure of the decays.

– We refer to Sect. VI.7 for a more detailed summary of the results on all charmless B decays studied in this paper.
– We have studied the present data constraints on the amplitude parameters in the presence of arbitrary New

Physics contributions to B0B0 mixing and to b → d and b → s penguin transitions. The construction of a model-
independent Unitarity Triangle is not precise enough to exclude sizable non-standard corrections to the mixing,
which appears to be somehow in contrast to a prejudice found in the literature. The situation will improve in the
future as soon as accurate determinations of the angles α and γ from tree dominated decays become available, and
the theoretical errors on the lattice matrix elements relevant for the mixing are reduced. For ∆B = 1 transitions
we have shown that a general parameterization may give significant model-independent constraints on potential
New Physics contributions, when the CP -violation measurements become more precise.

The outstanding role of B physics in the quest for a better understanding of CP violation in the Standard Model and
beyond, as well as for the precise metrology of the off-diagonal CKM matrix elements, is assured by the continuous rise
of the peak luminosity at the B factories. New and competitive results from the Tevatron experiments are expected
soon, in particular the highly important measurement of B0

sB
0
s oscillation. We have attempted to extrapolate the

results leading to the Unitarity Triangle angle α up to luminosities of 1 ab−1 (and 10 ab−1 in some cases). It seems
reasonable to expect that a determination of α, dominated by B → ρρ, to an error of about 6◦ or better (not including
isospin-breaking effects) can be achieved towards the end of the first generation B-factory program, with an expected
integrated luminosity of combined roughly 2 ab−1. Plausible extrapolations for the angle γ are more difficult since all
measurements in the beauty-to-charm sector crucially depend on the ratios of the corresponding CKM-suppressed-to-
CKM-favored amplitudes, which are only approximately known at present.

In summary, we can hope for a precise metrology of the Unitarity Triangle angles within a few years, but – in view
of the present results – we do not expect it to be sufficiently accurate to reveal inconsistencies with the CKM picture.
Therefore, besides ∆ms, major attention is directed to the forthcoming measurements of CP -violation parameters in
penguin-dominated modes. The near future will show whether the current pattern turns into a significant deviation
from the expectation, or if the discrepancies fall behind the theoretical uncertainties that are expected in these modes.
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Part IX
Appendices

A: Statistical significance of B0
sB0

s oscillation

The purpose of this appendix is to evaluate the statistical significance of the world average results on B0
sB

0
s oscillation.

At present, the world average likelihood as a function of∆ms exhibited a roughly parabolic behavior at∆ms � 17 ps−1.
Following an analytical approach, we address two questions:
– what is the PDF of a likelihood measurement of ∆ms and what is the confidence level (CL) as a function of ∆ms

to be associated with an observation obtained with the current level of sensitivity;
– what is the expected likelihood behavior and how reliable it is to use the likelihood to infer CLs.
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A.1 Definitions and proper decay time modeling

Using the simplified framework of [123], we denote for a homogeneous event sample:

– Ps± the (true) time distribution (in unit of the Bs lifetime τB) of mixed (Ps−) and unmixed (Ps+) events, given
by

Ps± =
1
2
e−t(1 ± cos(xst)) , (A.1)

with xs = ∆msτb,
– w the mistag rate, and D = 1 − 2w the corresponding dilution factor;
– fs the fraction of signal events in the sample;
– The background is assumed to:

– follow the same exponential distribution as the signal,
– be purely of the unmixed type,
– be affected by the same mistag rate;

– Gt the detector resolution function for the time measurement t → tmes;
It is assumed to be a Gaussian of zero mean and time dependent width

σ =
√
a+ bt2 (A.2)

Gt(tmes − t) =
1√
2πσ

exp

(
−1

2

(
tmes − t

σ

)2)
, (A.3)

with a accounting for the decay length measurement and b accounting for the momentum measurement

a =
(
m

p

σL

cτB

)2
, b =

(
σp

p

)2
. (A.4)

With these notations the proper time distribution of events, classified as mixed or unmixed, read

P−(tmes) =
(
fs

1
2

(1 −D cos(xst)) + (1 − fs)w
)
e−t ⊗Gt , (A.5)

P+(tmes) =
(
fs

1
2

((1 +D cos(xst)) + (1 − fs)(1 − w)
)
e−t ⊗Gt . (A.6)

Taken together, these distributions are normalized to unity

+∞∫
−∞

(P− + P+)dtmes = 1 . (A.7)

A.2 Measurement

The xs measurement is assumed to be performed with the use of the log-likelihood

L(xs) =
∑
−

ln(P−) +
∑
+

ln(P+) , (A.8)

where the first (second) sum runs over mixed (unmixed) events. The measured value of xs (xmes
s ) is defined to be the

one maximizing L(xs)
∂L(xs)
∂xs

∣∣∣∣
xs=xmes

s

= 0 . (A.9)

The outcome of the experiment xmes
s is a random number, which, for large enough statistics, follows a Gaussian PDF

P(xmes
s | xs) ≡ Φxs

lo (xmes
s ) =

1√
2πΣ(xs)

exp

(
−1

2

(
xmes

s − xs

Σ(xs)

)2)
, (A.10)
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where the standard deviation Σ(xs) is given by the second derivative of L, through the integral A

(
√
NΣ(xs))−2 =

+∞∫
−∞

(
(Ṗ−)2

P−
+

(Ṗ+)2

P+

)
dtmes ≡ A(xs) , (A.11)

Ṗ± =
∂P±
∂xs

(A.12)

= ∓fs
1
2
D t sin(xst)e−t ⊗Gt . (A.13)

Here N is the total number of mixed and unmixed events, and the integrals are performed with the use of the true
value of xs, not the measured one74.

It follows from (A.10) that one may set a confidence level CL(xhyp
s ) on a given xs hypothetical value xhyp

s using
the χ2 law

CL(xhyp
s ) =

∫
<

Φxs

lo (xmes
s

′)dxmes
s

′ = Prob(χ2, 1) , (A.15)

χx
s (xmes

s ) =
xmes

s − xhyp
s

Σ(xhyp
s )

, (A.16)

where the integral is performed over the xmes
s

′ domain where Φxs

lo (xmes
s

′) < Φxs

lo (xmes
s ), that is to say where χx

s (xmes
s

′) >
χx

s (xmes
s ).

A.2.1 Parabolic behavior

If the log-likelihood is parabolic nearby its maximum

L(xhyp
s ) � L(xmes

s ) +
1
2
∂2L
∂x2

s

∣∣∣∣
xs=xmes

s

(
xhyp

s − xmes
s

)2
, (A.17)

then, in the vicinity of xmes
s , Σ(xhyp

s ) � cst = Σ(xmes
s ), and one can evaluate Σ as the second derivative of the

experimental log-likelihood, taken at the measured value xmes
s . In effect

− ∂2L
∂x2

s

∣∣∣∣
xs=xmes

s

= −

∑

−

(
P̈−P− − (Ṗ−)2

P 2−

)2
+
∑
+

(
P̈+P+ − (Ṗ+)2

P 2
+

)2 (A.18)

(N→∞)−→ NA(xs) = Σ−2 , (A.19)

where P̈± denotes the second derivative with respect to xs

P̈± =
∂2P±
∂x2

s

(A.20)

= ∓fs
1
2
D t2 cos(xst)e−t ⊗Gt , (A.21)

which however does not appear in the final expression thanks to (A.7), and assuming that xmes
s = xs (which is true

for N → ∞).

74 If the event sample is not homogeneous but is an admixture of ns homogeneous subsamples, each with a detector resolution
function Gt

i, a signal fraction f i
s, a mistag rate wi, and representing a fraction fi of the overall sample of N events, the

corresponding time distribution are denoted P i
± (the factor fi being not included). The A integral (as well as other integrals

introduced below) is then to be replaced by the weighted sums

A(xs) =
ns∑
i=1

fiA
i(xs) . (A.14)
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Equivalently, one can evaluate Σ by locating the value of xhyp
s which yields a drop of −1/2 of the log-likelihood,

for the experiment at hand, or one can compute directly the χ2 using the approximation

χ2(xhyp
s ) =

(
xmes

s − xhyp
s

Σ(xhyp
s )

)2
� 2(L(xmes

s ) − L(xhyp
s )) ≡ χ̃2(xhyp

s ) . (A.22)

Bayesian point of view
Because of the simplicity of the above relations, one may introduce the concept of the PDF of the true value of xs by
remarking that, if xmes

s is viewed as a non-random number (the actual outcome of a finalized single experiment) while
the true value of xs is taken to be a random number, the object

P(xs | xmes
s ) ≡ Φ

xmes
s

lo (xs) , (A.23)

allows to define

CL(xhyp
s ) = Prob(χ2, 1) , (A.24)

χ =
xhyp

s − xmes
s

Σ(xmes
s )

, (A.25)

which is numerically identical to the one of (A.15) – if Σ(xmes
s ) = Σ(xhyp

s ) – but with a completely different reading:
one states that the CL of xhyp

s is given by

CL(xhyp
s ) =

∫
<

P(xmes
s | xhyp

s

′
)dxhyp

s

′
, (A.26)

where the integral is performed over the xhyp
s

′ domain where P(xmes
s | xhyp

s
′) < P(xmes

s | xhyp
s ) .

A.2.2 Non-parabolic behavior

Obviously, for large enough xhyp
s , the approximation Σ(xhyp

s ) � Σ(xmes
s ) breaks down since the sensitivity of the

experiment vanishes due to the finite vertex resolution, i.e., Σ(xhyp
s → ∞) → ∞. It follows that the likelihood is not

parabolic for large enough xhyp
s . The vanishing sensitivity makes χ2, as defined by (A.16), a poor test statistics to

probe for large xs values. Furthermore, as discussed in Appendix A.4 to infer from the χ2 value the correct CL(xhyp
s )

is not a straightforward task: (A.15) does not apply (i.e., it is not a real χ2) because (A.10) is a poor approximation.
The redefinition of the χ2 using the right hand side of (A.22) provides a more appropriate test statistics to deal

with large values of xhyp
s . Whereas (A.15) does not apply, χ̃2 is capable of ruling out xhyp

s values lying beyond the
sensitivity reach75 (if L(xmes

s ) value is large enough) provided one computes the CL using

CL(xhyp
s ) =

∞∫
χ̃2(xhyp

s )

Ψxhyp
s (χ̃2′) Dχ̃2′ , (A.27)

where Ψxhyp
s is the PDF of the χ̃2 test statistics, for xs = xhyp

s , to be obtained with the use of toy Monte Carlo. A
tempting shortcut is to bypass the toy Monte Carlo simulation and to assume that the approximation

CL(xhyp
s ) ≈ Prob(χ̃2(xhyp

s ), 1) , (A.28)

remains valid although the approximation of (A.22) is known to break-down.

Bayesian point of view
The xhyp

s ’PDF’ introduced in (A.23) can be redefined as

P(xhyp
s | xmes

s ) ≡ ϕ
xmes

s

L (xhyp
s ) = const × exp

(L(xhyp
s ) − L(xmes

s )
)
, (A.29)

where the constant should be such that ϕL is normalized to unity when integrated over xhyp
s . In the present case, such

a constant does not exist because
lim

xhyp
s →∞

L(xhyp
s ) = finite constant , (A.30)

75 The rejection of xhyp
s values beyond the sensitivity reach is not a paradox: it uses the fact that large values are unlikely to

yield an indication of a clear signal, especially at low values of xs.
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and hence ϕL itself tends asymptotically towards a constant. We will consider below the average value of ϕL as
computed using the average likelihood which one would obtain. Ignoring statistical fluctuations the average function
is denoted

ϕxs

L (xhyp
s ) = N

∫
(P xs− ln(P xhyp

s− ) + P xs
+ ln(P xhyp

s
+ ))dtmes , (A.31)

and its leading order, next-to-leading order and next-to-next-to leading order approximations are denoted ϕL:lo, ϕL:nlo
and ϕL:nnlo. The numerical value of the ratio

Rtail ≡ ϕL(∞)
ϕL(xs)

, (A.32)

which vanishes exponentially with N , is a measure of how non-Gaussian the likelihood is.

A.3 Experimental constraint

The question arises as to how to incorporate experimental constraints derived from the Bs mixing analysis into a
global CKM fit. A possibility is to add to the (twice)log-likelihood of the global fit the term

χ2(xhyp
s ) = 2(L(∞) − L(xhyp

s )) , (A.33)

or equivalently to multiply the likelihood L by the ratio

∆L =
P(xhyp

s | xmes
s )

P(∞ | xmes
s )

, (A.34)

where the constant denominator is introduced here for convenience only. Since the L function is defined up to an
irrelevant additive constant, using (A.33) or (A.22) amounts to making the same approximation, which is guaranteed
to be correct, for large enough statistics, and in the vicinity of xmes

s .
The question remains to determine under which conditions on N and xhyp

s the approximation is

1. obviously valid: that is to say to determine the domain of validity of the leading order (N → ∞) key-formula
(A.10). To answer this question, one should compute its next-to-leading order (NLO) correction terms: Ap-
pendix A.4 is devoted to that.

2. non-obviously valid: that is to say to determine whether or not, even though the key-formula does not apply,
(A.33) provides nevertheless a means to compute the CL with an acceptable accuracy: Appendix A.5 discusses
that.

A.4 Next-to-leading order key-formula

The next-to-leading order key-formula can be written as76

Φxs

nlo(x
mes
s ) = Φxs

lo (xmes
s ) e−axs

3 χ3
(1 + axs

0 χ) , (A.35)

axs
0 =

2B − C

2A
1√
NA

= −Σ̇ , (A.36)

axs
3 =

3B − C

6A
1√
NA

, (A.37)

where A(xs) is the integral defined in (A.11), and B(xs) and C(xs) are the two new integrals

B(xs) =

+∞∫
−∞

(
Ṗ−P̈−
P−

+
Ṗ+P̈+

P+

)
dtmes , (A.38)

C(xs) =

+∞∫
−∞

(
(Ṗ−)3

P 2−
+

(Ṗ+)3

P 2
+

)
dtmes . (A.39)

76 In the course of the computation, the a3 correction term appears in the exponential, as indicated. However the formula is
correct up to the next-to-leading order only, and the a3 term can be brought down to the level of the a0 term without affecting
this. Although it would guaranty the proper normalization of Φnlo to unity, this simplification is not done below.
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The integral C tends to be small because, (i) the two contributions have opposite signs, and (ii) the denominator is of
order two: it follows that a3 � a0/2. The right hand side of (A.36) links the next-to-leading order correction terms a0
and a3 to the dependence on xs of Σ. When Σ depends significantly on xs the key-formula breaks down: not only is
the standard treatment of Appendix A.2.1 invalid (and the Bayesian treatment mathematically unjustified), but the
well-known formula (A.15) itself becomes incorrect, even if one uses the correct Σ(xs).

The expression (A.35) is identical to (A.10) for small χ values. Although it extends the range of validity to larger
χ values, it cannot be trusted too far away from the origin, where higher order corrections start to play a role. In
particular, Φnlo becomes negative (hence meaningless) for χ > −a−1

0 (a0 is negative since it is equal to minus the
derivative of Σ with respect to xs).

Since Φ is sizeable only insofar χ ∼ O(1) the next-to-leading order terms, when relevant, are of the form N− 1
2 ×

[ratio of integrals]. Hence they are negligible for large enough N and for a small enough ratio of integrals.
The most likely value for xmes

s is no longer xs, and a non-zero value of B leads to a O(1/N) bias in the measurement.
The expected value of xmes

s reads

〈xmes
s 〉 = xs −

(
B(xs)
A

Σ

2

)
Σ . (A.40)

The bias is negligible (in unit of Σ) if the event sample is large enough, i.e. if N � B2/(4A3). To next-to-leading
order, the double-sided CL reads

CLnlo(xhyp
s ) =

∫
<

Φ
xhyp

s

nlo (xmes
s

′)dxmes
s

′ , (A.41)

where the integral is performed over the xmes
s

′ domain where Φxhyp
s

nlo (xmes
s

′) < Φ
xhyp

s

nlo (xmes
s ).

A.5 Using the likelihood function

A.5.1 Average likelihood shape

To next-to-leading order, and in the vicinity of the true xs value, the average log-likelihood function takes the form
(cf. Appendix A.7)

Lnlo(xhyp
s ) � L(xs) − α1χ+ α2χ

2 − α3χ
3 , (A.42)

with
α1 = 0 , α2 = −1

2
, α3 = −3B − 2C

6A
1√
NA

� −a3 � 1
2
Σ̇ , (A.43)

and

χ ≡ xs − xhyp
s

Σ(xs)
. (A.44)

Although the above expression reaches its maximum at χ = 0, this does not contradict the fact that xmes
s is a biased

estimator of xs: because of the statistical fluctuations, the first term of the expansion is non-zero for a given experiment
(cf. Appendix A.7).

A.5.2 Amplitude formalism

It was shown in [123] that the log-likelihood function L(xs) can be retrieved from the functions A(xs) and σ[A](xs)
defined as the measurement and the uncertainty on the measurement of an ad hoc amplitude coefficient A placed in
front of the cosine modulation term

P−(tmes)[A] =
(
fs

1
2

(1 −DA cos(xst)) + (1 − fs)w
)
e−t ⊗Gt , (A.45)

P+(tmes)[A] =
(
fs

1
2

(1 +DA cos(xst)) + (1 − fs)(1 − w)
)
e−t ⊗Gt . (A.46)

Restated in the framework of the present work, the advantage of this indirect probe of the oscillation phenomenon
stems from the fact that the dependence on A is linear and hence the correction terms of the NLO key-formula
vanish: the measurement of A is purely Gaussian, and it follows that merging different experimental measurements is
straightforward.
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The result established in [123] takes the form

Lx
s (xhyp

s ) =
A(xhyp

s ) − 1
2

σ2[A]
+ Lx

s (∞) . (A.47)

It can be shown to be an excellent, though approximate, relationship by introducing the objects

E− =
(
fs

1
2

+ (1 − fs)w
)
e−t ⊗Gt , (A.48)

E+ =
(
fs

1
2

+ (1 − fs)(1 − w)
)
e−t ⊗Gt , (A.49)

K−(xs) = − 1
E−

(
fs

1
2
D cos(xst)e−t ⊗Gt

)
, (A.50)

K+(xs) =
1

E+

(
fs

1
2
D cos(xst)e−t ⊗Gt

)
, (A.51)

(A.45) takes the form

P±(xhyp
s ) = E±(1 + AK±(xhyp

s )) . (A.52)

The two K±(xhyp
s ) objects bear the properties:

– | K± |≤ 1, in principle.
– | K± |� 1, in practice. This is because the D coefficient is usually smaller than one, hence higher powers of K

are suppressed, but also because when considering large enough xs values the convolution with the finite detector
response Gt washes out the cosine modulation

lim
xhyp

s →∞
K±(xhyp

s ) = 0 . (A.53)

Hence the log-likelihood of (A.8) (with or without A) can be expanded to the second order in K± (omitting here the
± index distinguishing mixed and unmixed events)

L(xhyp
s : A) =

∑
ln(P (xhyp

s )) (A.54)

=
∑

ln(E) +
∑

ln(1 + AK(xhyp
s )) (A.55)

� Lx
s (∞) +

∑
(AK(xhyp

s ) − 1
2
A2K2(xhyp

s )) . (A.56)

The log-likelihood we are interested in is

L(xhyp
s ) = L(xhyp

s : A ≡ 1) � Lx
s (∞) +

∑
(K(xhyp

s ) − 1
2
K2(xhyp

s )) . (A.57)

The derivative of the log-likelihood used to compute A(xhyp
s ) is

∂L(xhyp
s : A)
∂A =

∑
(K(xhyp

s ) − AK2(xhyp
s )) , (A.58)

from which one obtains

A(xhyp
s ) =

∑K(xhyp
s )∑K2(xhyp
s )

± 1√∑K2(xhyp
s )

, (A.59)

where the expression for the uncertainty neglects higher order Kn≥3 terms. Using (A.59) in (A.57) one recovers (A.47).
Equation (A.59) yields a slightly biased estimator of A because the higher order terms do not exactly cancel out, even
on the average77. This bias is negligible for all values of xhyp

s but for xhyp
s � xs where, although it remains small, it

becomes noticeable.
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Table 16. Numerical values entering into the NLO PDF Φnlo

and NNLO average likelihood, for four values of ∆ms. The def-
inition of the four integrals D, E, F and G are given in Ap-
pendix A.7. The value above which Φnlo becomes negative is
∆ms[max] = ∆ms − a−1

0 Σ � ∆ms − A/B � ∆ms + 5( ps−1).
The ratio Rtail = ϕL(∞)/ϕL(∆ms) provides a measure of how
far from its Gaussian limit the likelihood is

∆ms (ps−1) 10 17 20 25

Σ (ps−1) 0.33 1.38 2.67 7.36

A 0.77 10−2 0.44 10−3 0.11 10−3 0.15 10−4

B/A −0.18 −0.19 −0.21 −0.17
C/A 0.03 −0.002 −0.007 0.005
D/A 1.40 0.53 0.65 1.31
E/A 0.08 0.005 0.001 0.00
F/A 0.05 0.007 0.002 -0.001
G/A −1.27 −0.51 −0.30 -0.38

a0 −0.06 −0.26 −0.55 -1.26
a3 −0.03 −0.13 −0.28 −0.62

α3 0.03 0.13 0.27 0.63
α4 0.004 0.04 −0.22 -5.48

∆ms[max] 15.1 22.2 24.9 30.8
Rtail 3. 10−6 0.12 0.37 0.75

A.6 Discussion on numerical examples

For illustration, we use here numbers that correspond to the present level of sensitivity of the world average

N = 1200 , fs = 0.35 , w is set to zero , a = 0.0046 , b = 0.0090 .

The numerical values of the coefficients introduced previously are given in Table 16 for four ∆ms values.
Figure 61 shows the next-to-leading-order Φnlo PDF (A.35) of the ∆ms measurement for a true value of

∆ms = 10 ps−1 and the leading order PDF Φlo (A.10). The two PDFs being barely distinguishable, the leading
order approximation is excellent.

Figure 62 gives the next-to-leading-order Φ17
nlo PDF of the ∆ms measurement (solid line) and leading order PDF Φ17

lo
(dotted line), for a true value ∆ms = 17 ps−1. The two PDFs differ significantly, but the leading order approximation
remains acceptable in the core of the distribution. However it would underestimate by a factor about two the probability
to obtain a measurement above ∆ms = 20 ps−1. The right hand plot in Fig. 62 shows the next-to-leading-order Φ17

nlo
PDF (solid line) together with Φ20

nlo PDF (dotted line) and the leading order PDF Φ20
lo for ∆ms = 20 ps−1 (dashed-

dotted line). The integral of Φ17
nlo above ∆ms = 20 ps−1 is not a good approximation of the CL of a true value

∆ms = 20 ps−1 leading to a measurement ∆ms = 17 ps−1, the latter being defined as the integral of Φ20
0 below

∆ms = 17 ps−1. However, in the present case, one cannot fully rely on the approximation Φ20
0 � Φ20

nlo owing to the
large variation between Φ20

lo and Φ20
nlo.

Figure 63 shows the solutions amplitude A given in (A.59) for different true values of ∆ms.

77 They would cancel if the background were affecting in the same way P− and P+.
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Fig. 61. Left : next-to-leading-order Φ10
nlo PDF of the ∆ms measurement (solid line) and leading order PDF Φ10

lo (dotted line),
for a true value ∆ms = 10 ps−1. The two PDFs are barely distinguishable. The leading order approximation is excellent.
Right : next-to-leading-order Φ10

nlo PDF (solid line) and Φ11
nlo PDF, for ∆ms = 11 ps−1 (dotted line). The integral of Φ10

nlo above
∆ms = 11 ps−1 is a good approximation of the CL of a true value ∆ms = 11 ps−1 leading to a measurement ∆ms ≤ 10 ps−1,
the latter being defined as the integral of Φ11

0 below ∆ms = 10 ps−1

Fig. 62. Left : next-to-leading-order Φ17
nlo PDF of the ∆ms measurement (solid line) and leading order PDF Φ17

lo (dotted line),
for a true value ∆ms = 17 ps−1. The two PDFs differ significantly, but the leading order approximation remains acceptable in
the core of the distribution. However it would underestimate by a factor two about the probability to obtain a measurement
above ∆ms = 20 ps−1. Right : next-to-leading-order Φ17

nlo PDF (solid line) together with Φ20
nlo PDF (dotted line) and the leading

order PDF Φ20
lo for ∆ms = 20 ps−1 (dashed-dotted line). The integral of Φ17

nlo above ∆ms = 20 ps−1 is not a good approximation
of the CL of a true value ∆ms = 20 ps−1 leading to a measurement ∆ms = 17 ps−1, the latter being defined as the integral of
Φ20

0 below ∆ms = 17 ps−1. However, in the present case, one cannot fully rely on the approximation Φ20
0 � Φ20

nlo owing to the
large variation between Φ20

lo and Φ20
nlo

A.7 Next-to-leading order likelihood

We consider a likelihood

L =
N∑

i=1

lnP , (A.60)

where the PDF P depends on the parameter xs. We denote

– xs the true value of the parameter,
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Fig. 63. Amplitude A solutions given in (A.59) (where orders
up to K4(xhyp

s ) are considered in the expansion used here) for
different true values of ∆ms

– P0 the PDF when evaluated with xs.

In the vicinity of xs, the Taylor expansion to the fourth order is

L(xhyp
s ) = α0 − α1χ+ α2χ

2 − α3χ
3 + α4χ

4 , (A.61)

with

α0 =
∑

ln(P0) , α1 =
∑[

Ṗ0

P0

]
Σ , α2 =

1
2

∑[
P̈0

P0
− Ṗ 2

0

P 2
0

]
Σ2 ,

α3 =
1
6

∑[ ˙̈P0

P0
− 3

Ṗ0P̈0

P 2
0

+ 2
Ṗ 3

0

P 3
0

]
Σ3 , α4 =

1
24

∑[ ¨̈P0

P0
− 3

P̈ 2
0

P 2
0

− 4
Ṗ0

˙̈P0

P 2
0

+ 12
Ṗ 2

0 P̈0

P 3
0

− 6
Ṗ 4

0

P 4
0

]
Σ4 .

For a given experiment, the values of the ai coefficients are correlated random numbers. On the average, their values
are obtained by replacing the sum by N

∫
P0. Using (A.7), one gets

α1 = 0 , α2 = −1
2
, α3 =

1
6

−3B + 2C√
NA

3
2

, α4 =
1
24

−3D − 6E + 12F − 4G
N

3
2A2

,

where the last term involves the new set of integrals

D(xs) =

+∞∫
−∞

(
P̈ 2

−
P−

+
P̈ 2

+

P+

)
dtmes , E(xs) =

+∞∫
−∞

(
Ṗ 4

−
P 3−

+
Ṗ 4

+

P 3
+

)
dtmes ,

F (xs) =

+∞∫
−∞

(
Ṗ 2

−P̈−
P 2−

+
Ṗ 2

+P̈+

P 2
+

)
dtmes , G(xs) =

+∞∫
−∞

(
Ṗ−

˙̈P−
P−

+
Ṗ+

˙̈P+

P+

)
dtmes .

In effect, the maximum of Lnlo is reached for

0 = −α1 + 2α2χ− 3α3χ
2 (A.62)

xmes
s � xs −

(
α1

2α2
− 3α2

1α3

8α3
2

)
. (A.63)
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B: Combining inconsistent measurements

When several measurements xexp(i) ± σxexp(i), with i = 1, .., N , of the same physical observable X are available, the
question arises on how to combine them into a single measurement 〈xexp〉. Combining the measurements can serve two
purposes: merely, it can be to provide a summary carrying the overall information within a conveniently easily-quoted
global measurement, or, more ambitiously, it can be to provide a means to incorporate the set of measurements into
a more involved analysis, like a global CKM fit, where the physical observable X enters as one input among others.

We note that the averaging method introduced below is not yet applied in the present CKM analysis. We reserve
its use for forthcoming occasions.

The weighted mean (WM) method defined by

〈xexp〉 = σ2
〈xexp〉

N∑
i=1

σ−2
xexp

(i)xexp(i) , (B.1)

σ−2
〈xexp〉 =

N∑
i=1

σ−2
xexp

(i) , (B.2)

is the optimal scheme to merge the individual measurements. However it assumes that the measurements are consistent
the ones with the others. It leads to an easily-quoted global measurement X = 〈xexp〉 ± σ〈xexp〉. Furthermore, because
the underlying hypothesis is clear (the set of measurements is taken to be consistent) the WM method is statistically
well-defined and its result is easy to use: the true value of the physical observable being assumed to be x, the probability
for this value to yield for the χ2

χ2(x) =
( 〈xexp〉 − x

σ〈xexp〉

)2
, (B.3)

a value larger than the observed one, is given by:

P(x) = Prob(χ2, 1) . (B.4)

A measure of the consistency of the set of measurements is provided by the χ2

χ2(〈xexp〉) =
N∑

i=1

(
xexp(i) − 〈xexp〉

σxexp(i)

)2
, (B.5)

and, more conveniently, by its associated confidence level

P(〈xexp〉) = Prob(χ2(〈xexp〉), N − 1) . (B.6)

If the value of χ2(〈xexp〉) is too large, one may suspect that some of the measurements in the set are flawed. If one insists
on a democratic treatment of the xexp(i), i.e., if one refuses to remove the suspected ones, the PDG-recommended
scheme [12], termed the rescaled weighted mean below (RWM), consists of rescaling the error σ〈xexp〉 of (B.2) by the
scale factor

S =
√
χ2(〈xexp〉)/(N − 1) , (B.7)

if the latter exceeds unity
Σ〈xexp〉 = σ〈xexp〉 S . (B.8)

The RWM method is simple and convenient, however, it suffers from two important drawbacks:
1. Psychostatistics

On the average, the quoted error is necessarily enlarged with respect to the one of the un-rescaled weighted mean
(WM), even for consistent data sets. Tampering with (B.2) implies a departure from well-defined statistics to enter
the realm of ill-defined (psycho)statistics, where working hypotheses are no longer fully explicited.

2. Schizostatistics
The average 〈xexp〉 may lie outside the range of values covered by the measurements. This is because the democratic
treatment does not allow to detect measurements which obviously stick out from the set. Such a measurement,
termed an outlier in the following, pulls the average toward its value, albeit it may remain inconsistent with the
resulting weighted mean, even though the error of the latter is rescaled.
In this paper we advocate the use of a method, termed the Combiner, which is an extension to the weighted mean

method78. Although the Combiner does not provide an escape from the first drawback, it is shown below to be more
satisfactory with respect to the second drawback. The discussion of the above drawbacks is further expanded below.
78 Another approach for the combination of inconsistent measurements has been developed in [302].
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B.0.1 Psychostatistics

There is no way out of the first drawback: this is because accepting the possibility of having in the set of measurements
some that are biased in an unspecified way implies a loss of information, which, furthermore, is ill-defined. When the
standard deviation is rescaled following the RWM scheme, the (re)definition of (B.3) is to be taken, at best, as a test
statistics. It is no longer a pure χ2 term and (B.4) does not hold. Moreover, the use of this test statistics is ill-defined.
Its distribution cannot be determined, since the underlying hypothesis is now unspecified (the set of measurements is
taken to be inconsistent, but this is not a precisely defined hypothesis).

However the aim of the RWM method being to be conservative, the price to pay is to accept the use of ill-defined
statistics and to deal with χ2(x) as if it were a pure χ2. Stated differently, applying (B.4) yields over-conservative
confidence levels, which, after all, is precisely what one is looking for.

B.0.2 Schizostatistics

The second drawback is worth being spelled out explicitly. If one is dealing with two measurements which are sufficiently
apart for the rescaling of (B.8) to be enforced, namely, if

∆x2
exp ≡ (xexp(2) − xexp(1))2 > σ2

xexp
(1) + σ2

xexp
(2) , (B.9)

leading to a rescaled uncertainty (cf. (B.8))

Σ〈xexp〉 =
σxexp(1)σxexp(2)|∆xexp|
σ2

xexp
(1) + σ2

xexp
(2)

, (B.10)

then the RWM method is prone to contradict itself.
On the one hand, using Σ〈xexp〉 in place of σ〈xexp〉 in (B.3), yields

χ2(x = xexp(1)) =
(
σxexp(1)
σxexp(2)

)2
, (B.11)

χ2(x = xexp(2)) =
(
σxexp(2)
σxexp(1)

)2
, (B.12)

independently on how far apart the two measurements are, provided (B.9) is fullfilled. Hence, if the two measurements
have widely different uncertainties, the measurement with the largest uncertainty (e.g., the second one: σxexp(2) �
σxexp(1)) is viewed as corresponding to a true value of the physical observable x = xexp(2) which is utterly ruled out
by the data (χ2(x = xexp(2)) � 1), even though the weighted mean error is rescaled.

On the other hand, the weighted mean is pulled away from both measurements in proportion of ∆xexp. As a result,
from the view point of both measurements i = 1, 2, the hypothesis that the true value of the physical observable is
x = 〈xexp〉 leads to

χ2(x = 〈xexp〉)(i) =
(
xexp(i) − 〈xexp〉

σxexp(i)

)2

= ∆x2
exp

σxexp
2(i)

(σxexp
2(1) + σxexp

2(2))2
, (B.13)

and hence is liable to be ruled out as well, if ∆xexp is large enough. In particular, if σxexp(2) � σxexp(1)

χ2(x = 〈xexp〉)(1) � S2
(
σxexp(1)
σxexp(2)

)2

� 1 , (B.14)

χ2(x = 〈xexp〉)(2) � S2 . (B.15)

Therefore, if the second measurement has a much larger uncertainty than the first measurement, the conjunction of
(B.12–B.14) implies that when the rescaling is significant, the RWM result and the second measurement are mutually
incompatible: this contradicts the use of the second measurement to define the weighted mean, especially considering
its impact on Σ〈xexp〉 as displayed by (B.10).

For twin measurements with identical σxexp , the RWM method is not self-contradictory: whereas (B.13) indicates
that from the view point of both measurements the RWM value may be unacceptable, (B.11–B.12) guarantee that the
rescaled uncertainty yields an acceptable χ2 for both.

If only two measurements enter into play, not much can be done to circumvent this second drawback, since there
is no objective way to identify the flawed one. However, if more than two measurements are available, one may rely
on the consistency of a subset of them to identify the possible outliers.
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B.1 The Combiner

The Combiner method is explicitly build as an extension to the weighted mean: by construction, it tends to reproduce
Eqs.(B.1–B.2) in the case of a consistent set of measurements. The (psycho)statistical point of view which is taken
here is that some of the measurements to be averaged might be incorrect: if such measurements occur, they should be
removed from the set.

B.1.1 Principle

The removal of incorrect measurements relies on the clustering of the other measurements around a common mean.
Rather than removing abruptly a measurement if it meets some criteria, the Combiner does not cut but considers
all possible hypotheses about the correctness of the measurements. A configuration being defined as a subset of
measurements that are assumed to be consistent the ones with others, the Combiner weighs all possible configurations
to build an overall likelihood. To reproduce the WM result, the Combiner favors the configurations involving the
largest number of measurements, provided they have good probabilities.

B.1.2 Notations

We denote:

– c, an ordered list of N bits. It is referred to as a configuration, indicating which measurements are considered.
For example, for N = 3, the configuration c ≡ 101 means that the two measurements i = 1 and i = 3 are to be
merged, while disregarding the measurement i = 2. The void configuration being of no interest, the total number
of configurations considered amounts to 2N − 1.

– nc, the number of bits set to one. It is referred to as the multiplicity of the configuration.
– call = 11 . . . 1, the configuration where all measurements are considered (ncall = N).
– χ2

c , the χ2 obtained from the weighted mean (cf., (B.1–B.5)) of the nc measurements to be considered in the
configuration c.

– Pc = Prob(χ2
c , nc − 1), the corresponding configuration probability (cf., (B.5)).

– Pc = 1 − Pc

– 〈xexp〉(c) and σ〈xexp〉(c), the results of the weighted mean for the configuration c.
– Gc ≡ Gc(x), the Gaussian likelihood (to be interpreted as a PDF when used in a Bayesian approach) with mean

value 〈xexp〉(c) and standard deviation σ〈xexp〉(c).
– wc, a weight characterizing the configuration c. The sum of these weights over the 2N −1 configurations is normalized

to unity, i.e.,
∑

c wc = 1.
– c′ > c denotes two configurations such that all the bits set at one in c′ are also set at one in c, and there is at least

one bit set at one in c′ which is not set at one in c (e.g., 1111 > 1101, but 1101 �> 1011). The configuration c′,
embedding c, is said to be larger than c.

– Products of probabilities over void configurations are set to one, e.g.,
∏c′>c

c′ Pc′ ≡ 1, if no c′ exist for which c′ > c
holds (i.e., c is the largest configuration: c = 11 . . . 1).

B.1.3 Definition

With these notations, the WM method consists of using only the configuration call. In a likelihood analysis relying on
those measurements, this treatment is equivalent to adding to the overall log-likelihood the term

χ2(x) = −2 lnG(x) , (B.16)

where the global likelihood G is the fully combined Gaussian G = Gcall . The RWM method consists of using the same
configuration, but, if S > 1, it modifies Gcall by rescaling its standard deviation. As pointed-out in the Introduction
(cf. Appendix B.0.1) even though in that case −2 lnGcall defines a pseudo-χ2, it should be used as a pure χ2.

Instead of using a single Gaussian, the Combiner uses for the global likelihood a compound function:

G(x) =
∑

c

wcGc(x) , (B.17)

which enters into the computation of the pseudo-χ2 of (B.16) here also to-be-used as a pure χ2. What remains to be
done is to define appropriately the weights wc. Obviously there is an infinite number of choices. Since the goal is to
protect the analysis from biased measurements and over-optimistic σ〈xexp〉 values, which is admittedly a vague goal,
one must rely on educated guesswork to pick-up a particular definition of the weights.
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The C-Combiner

For the C-Combiner, the weights are defined as

w(C)
c = a Pc

c′>c∏
c′

Pc′ , (B.18)

where the constant a ensures the proper normalization of the weights. The first term is a measure of the validity of
the combination, while the second term suppresses it, if any configuration larger than c receives a high probability. If
a configuration c is such that all larger configurations are unlikely, it does not get suppressed by the above expression.
For example, if an outlier measurement is utterly incompatible with all the others, it is kept by the C-Combiner with a
weight equal to a. It is termed the Cool-Combiner because of that. However, if the number of consistent measurements
grows, the outlier weight, a, decreases accordingly.

The T-Combiner

For the T-Combiner, the weights are defined as

wc =
Pc∑nc=nc′

c′ Pc′

(
1 −

nc′=nc∏
c′

Pc′

)
nc′ >nc∏

c′
Pc′ . (B.19)

The first term is a measure of the relative validity of the configuration c, with respect to configurations of the same
multiplicity nc. The second term weighs the validity of the configurations of multiplicity nc, taken as a whole. The third
term suppresses configurations of multiplicity nc if any higher multiplicity configuration receives a large probability.
Therefore, whether or not a configuration c′ is larger than c, if nc′ > nc, it is sufficient for c′ to receive a large
probability to suppress c. For example, if an outlier measurement is utterly incompatible with all the others, it is
suppressed by the Combiner, if some of the others are mutually compatible. It is termed the Tough-Combiner because
of that. For the configuration c = call, the third term receives no contribution and is defined to be equal to one. The
above expression ensures the normalization of the weights to unity.

B.2 Illustrations

B.2.1 Twin measurements

To illustrate how the Combiner works, we first consider the evolution of the likelihoodG as a function of the discrepancy
between twin measurements xexp(1) and xexp(2), with σxexp(1) = σxexp(2) = σ0 = 1. Figure 64 shows the combined
likelihood for the two Combiner approaches and for the RWM method. The measurements, indicated by the vertical
lines, develop a mutual disagreement which increases from the upper left figure to the lower right figure. One observes
that the Combiner likelihoods become broader with increasing discrepancy and eventually splits up into two Gaussian-
like likelihoods, where the T- and C-Combiner behave similarly. In the limit of extreme incompatibility, the two curves
become genuine Gaussians with central values xexp(1) and xexp(2), respectively, and width σ0. On the contrary, the
RWM Gaussian stays on the central value while the error increases to always keep the two measurements within
the (so-called) 68% probability limit. The unsatisfactory behavior of the RWM method becomes obvious at large
inconsistencies. One observes on the four lower curves in Fig. 64 that, whereas the Combiner treats the center value
x = 0 as being unlikely – it is favored by the weighted mean, although there exist no supporting measurement, while
the rescaled uncertainty gives rise to unduly broad tails which do not show up when using the Combiner.

This first example already exhibits advantages of using the Combiner. However it does not allow to demonstrate
fully the superiority of the method because it uses twin measurements. As discussed previously (cf. Appendix B.0.2),
the behavior of the RWM method is even less satisfactory if the two measurements have very different σxexp . In
addition, since only two measurements are available, the Combiner cannot use the clustering of correct measurements
to suppress the flawed one(s). As shown in the next section, the behavior of the Combiner is markedly different for a
set of more than two measurements among which a subset is consistent.
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Fig. 64. Likelihoods G for the T-
Combiner (solid), the C-Combiner
(dashed), and for the RWM method
(dotted). The vertical lines indicate
the locations of the two individual
measurements which develop a mutual
disagreement rising from the upper left
figure to the lower right figure. The
dotted line corresponds to the likelihood
of the C-Combiner

B.2.2 Information loss

It was mentioned before that enlarged errors (broader likelihoods) are an unavoidable side-effect when taking into
consideration the possibility of biased measurements. This entails a loss of information when the set is consistent. To
quantify this loss of information, we perform a toy Monte Carlo simulation of a set of N = 5 measurements, each
distributed following the same Gaussian, 〈xexp〉(1 − 5) = 〈x0〉 = 5 and σxexp(1 − 5) = σ0 = 1. We use the RWM
method and the T-Combiner to obtain the distributions of the mean value and the distributions of the root mean
square (RMS) of the likelihood G.

The results are given in Fig. 65. The left plot shows the distribution of the mean value 〈x[C]〉 as provided by the
T-Combiner. The distribution of 〈x[C]〉 is very close to be a Gaussian of width σ = 0.47. This is to be compared
with the (optimal) WM Gaussian distribution of width σWM :5 = 5−1/2 � 0.45. This width is also obtained for the
rescaled weighted mean, as the center value of the likelihood is not affected by the enlargement of the width. Although
statistical outliers are suppressed in the Combiner, giving rise to a narrower effective width, the increase of the width
due to the statistical occurrence of seeming inconsistencies superseeds the narrowing suppression effect. The right
figure shows the distribution of the RMS, σ[C], of the T-Combiner, to be compared to the distribution of the RMS,
σ[RWM], of the rescaled weighted mean. The increase of the errors is stronger for the Combiner.

B.2.3 Inconsistent set

The second example uses the following set of N = 5 measurements: xexp(1 − 5) = 3.7, 4.2, 5.0, 5.5, 0.0, all with
identical errors σxexp(1−5) = 1. While the first four data points are mutually compatible with a Gaussian distribution
(χ2/Ndof = 1.9/3), the last measurement is an outlier leading to a large overall χ2/Ndof = 18.9/4, translated into a
scale factor of S = 2.2. The C- and the T-Combiner yield for the likelihood G (quoting only the leading terms):
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Fig. 65. The left plot shows the toy Monte Carlo distribution of the mean value 〈x[C]〉 as provided by the T-Combiner (shaded
histogram), for a set of five consistent measurements which are Gaussian distributed around 〈xexp〉 = 5, each with a standard
deviation σ(i) = 1. A Gaussian fit to the distribution results in σ = 0.47. Also shown is the weighted mean distribution (solid
line) characterized by the standard deviation σWM :5 = 5−1/2 � 0.45. The right hand plot shows the distribution of the RMS,
σ[C], of the T-Combiner (shaded histogram) compared to the RMS, σ[RWM], of the rescaled weighted mean
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Fig. 66. Likelihoods G obtained by
the four approaches: T-Combiner, C-
Combiner, weighted mean and the
rescaled weighted mean. The vertical
lines indicate the five individual measure-
ments of which one is inconsistent

c 00001 11110 01110 10110 11010 11100
C-Combiner:

w
(C)
c 0.358 0.213 0.102 0.097 0.064 0.063

c 11110 01110 10110 11010 11100 –
T-Combiner:

w
(T)
c 0.580 0.125 0.118 0.079 0.077 –

Quoted are only the configurations with wc > 0.05. One observes that configurations where the incompatible measure-
ments are mixed, i.e., bit five and another one are set to one, have negligible weights for both the C and the T-Combiner.
The C-Combiner allows a sizable single weight for outlier (measurements five) which, while it is suppressed by the
T-Combiner.

The Combiner likelihoods are shown in Fig. 66 together with the WM and the RWM likelihoods. Whereas one
may be satisfied by either the C-Combiner or the T-Combiner, one observes that the WM and the RWM methods
contradict themselves: the outlier pulls the mean value significantly but, even in the RWM method, the outlier and the
mean value remain incompatible. Furthermore, in the example considered here, the measurement the farthest apart
from the outlier, although correct, is also incompatible with the mean value.

To study the recovery capability of the Combiner we plot in Fig. 67 the distribution of the mean value 〈x[C]〉
as provided by the T-Combiner (on the vertical axis) for the set of inconsistent measurements, four of which are
Gaussian distributed around 〈xexp〉 = 5, each with a standard deviation σ(i) = 1, while the fifth measurement is
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Fig. 68. The left plot shows the toy Monte Carlo distribution of the mean value 〈x[C]〉 as provided by the T-Combiner
(shaded histogram), for a set of inconsistent measurements four of which are Gaussian distributed around 〈xexp〉 = 5, each with
a standard deviation σ(i) = 1, while the fifth measurement is uniformly distributed between x5 = −5 and x5 = 15. A Gaussian
fit to the distribution results in σ = 0.56, which is to be compared with the optimal WM result σWM :4 = 0.5, obtained when
the fifth measurement is removed from the set. Also shown is the weighted mean distribution (solid line). The right hand plot
shows the distribution of the RMS, σ[C], of the T-Combiner (shaded histogram) compared to the RMS, σ[RWM], of the rescaled
weighted mean

uniformly distributed between x5 = −5 and x5 = 15 (on the horizontal axis). The latter is effectively removed from
the measurement set by the T-Combiner when it departs from 〈xexp〉 by about 1.5σ(i). We show that, for the T-
Combiner, the distribution of the mean value and the RMS for the toy experiments in Fig. 68 is very close to be a
Gaussian of width σ = 0.47 (left hand plot). This is to be compared with the optimal WM Gaussian distribution of
width σWM :4 = 0.5 (discarding the inconsistent measurement). The rescaled weighted mean exhibits a significantly
larger scattering than the Combiner. The right figure shows the distribution of the RMS, σ[C], of the T-Combiner, to
be compared to the distribution of the RMS, σ[RWM], of the rescaled weighted mean. The increase of the errors (i.e.,
the loss of information) is stronger for the rescaled weighted mean.
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